• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 8
  • 4
  • 1
  • Tagged with
  • 61
  • 16
  • 14
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studies on mechanisms of antiepilepsy and antiobesity in experimental animal models / 実験動物を用いたてんかん発作抑制作用および抗肥満作用の解明に関する研究

Okuma, Chihiro 23 March 2016 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(農学) / 乙第13019号 / 論農博第2829号 / 新制||農||1042(附属図書館) / 学位論文||H28||N4965(農学部図書室) / 32947 / (主査)教授 久米 新一, 教授 松井 徹, 教授 祝前 博明 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
22

Studies on Lipoprotein Specificity of Human Plasma Lecithin Cholesterol Acyltransferase

Jahani, Mehrnoosh 05 1900 (has links)
Huian plasma high-density lipoprotein (HDL) were isolated by a procedure employing polyanion precipitation and column chromatography. Lipid and protein composition of the HDL isolated by this method was found to be similar to another HDL preparation isolated by ultracentrifugation. However, minor differences were noted, including a higher phospholipid and apoproteinE content and lower triglyceride content of the HDL isolated by column chromatography. Four subfraction of HDL were obtained following chromatography on an anion exchange column. The subfraction four had the highest esterified to free cholesterol ratio, the second highest phospholipid to unesterified cholesterol, and the lowest molecular weight. In addition it was consistently coincided with lecithin: cholesterol acyltransferase (LCAT) activity and found to be the best substrate for the enzyme.
23

The type-I acyl-CoA thioesterase/acyltransferase gene family: linking structure to function /

O'Byrne, James, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
24

Identification and functional characterization of acyl-CoA:lysocardiolipin acyltransferase 2 (ALCAT2)

Bradley, Ryan 21 May 2015 (has links)
The human genome project has allowed for the rapid identification of a large number of protein families based on similarities in their genetic sequences. The acyl-glycerol phosphate acyltransferase (AGPAT) family of enzymes have been largely identified through sequence homology, with eleven isoforms identified in both mice and humans. Interestingly, very little work has been done on the characterization of AGPAT isoform 4. In the present study, I report the functional characterization of AGPAT4 as an acyl-CoA: lysocardiolipin acyltransferase (ALCAT), which we have renamed ALCAT2. Although ALCAT2 is present in most tissues, it is abundant in multiple brain regions including olfactory bulbs, hippocampus, cerebellum, cortex, and brain stem, and is detectable in both primary neurons and glial cells. In assays performed in vitro, ALCAT2 significantly increased the incorporation of [14C]oleoyl-CoA into phosphatidylinositol and CL using either lysophosphatidylinositol, or monolysocardiolipin or dilysocardiolipin as acyl acceptors, respectively. ALCAT2 did not display significant acyltransferase activity with lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylserine, or lysophosphatidylglycerol acyl acceptors. Overexpressing ALCAT2 in HEK-293 cells increased the total CL content, but did not significantly affect levels of other glycerophospholipids including phosphatidylinositol. Analysis of the fatty acyl profile of CL from ALCAT2-overexpressing cells indicated increased total saturated fatty acids, particularly stearate, palmitate, and myristate, and increased levels of n-3 polyunsaturated fatty acids α-linolenic acid (18:3n-3), eicosatrienoic acid (20:3n-3), and eicosapentanoic acid (20:5n-3). In accordance with its observed role in cardiolipin remodeling, ALCAT2 localized predominately to the mitochondria. ALCAT2 was also regulated during embryogenesis, and in varying metabolic states. In summary, ALCAT2 is a new enzyme in CL remodeling with a potential role in mitochondrial function.
25

Characterization of Acyltransferases and WRINKLED Orthologs Involved in TAG Biosynthesis in Avocado

Rahman, Md Mahbubur 01 December 2018 (has links)
Triacylglycerols (TAG) or storage oils in plants are utilized by humans for nutrition, production of biomaterials and fuels. Since nonseed tissues comprise the bulk biomass, it is pertinent to understand how to improve their TAG content. Typically, the final step in TAG biosynthesis is catalyzed by diacylglycerol (DAG) acyltransferases (DGAT) and/or phospholipid: diacylglycerol acyltransferases (PDAT), which also determine the content and composition of TAG. Besides enzymatic regulation of TAG synthesis, transcription factors such as WRINKLED1 (WRI1) play a critical role during fatty acid synthesis. In this study, mesocarp of Persea americana, with > 60% TAG by dry weight and oleic acid as the major constituent was used as a model system to explore TAG synthesis in nonseed tissues. Based on the transcriptome data of avocado, it was hypothesized that both DGAT and PDAT are likely to catalyze the conversion of DAG to TAG, and orthologs of WRI1 transcription factors regulate fatty acid biosynthesis. Here, with comprehensive in silico analyses, putative PamDGAT1 and 2 (Pam; Persea americana), PamPDAT1, and PamWRI1 and 2 were identified. When acyltransferases were expressed into TAG-deficient mutant yeast strain (H1246), only DGAT1 restored TAG synthesis capacity, with a preference for oleic acid. However, in planta, when transiently expressed in Nicotiana benthamiana leaves, PamDGAT1, PamPDAT1, PamWRI1, and PamWRI2 increased lipid contents, PamDGAT2 remained inactive. The data reveals that putative PamDGAT1, PamPDAT1 are functional and preferred acyltransferases in avocado and both PamWRI1 and 2 regulate fatty acid synthesis. In conclusion, while nonseed tissue of a basal angiosperm has certain distinct regulatory features, DAG to TAG conversion remains highly conserved.
26

Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene / Rencia van der Sluis

Van der Sluis, Rencia January 2015 (has links)
Thorough investigation of the glycine conjugation pathway has been neglected over the last 30 years. Environmental factors, nutrition, and the chronic use of medications are increasing the exposure of humans to benzoate and drugs that are metabolized to acyl-CoA intermediates. Glycine conjugation of mitochondrial acyl-CoAs, catalysed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterised in detail. Therefore, one of the objectives of this thesis was to develop a better understanding of glycine conjugation and its role in metabolism. In humans and animals a number of endogenous and xenobiotic organic acids are conjugated to glycine. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, recently it was proposed that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilised as neurotransmitters in the central nervous systems of animals. The glycine deportation hypothesis was based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. A thorough review of the literature for this thesis showed that the major role of glycine conjugation, however, is to dispose of the end products of phenylpropionate metabolism. The review also introduced the new perspective that mitochondrial glycine conjugation prevents the accumulation of benzoate in the mitochondrial matrix by forming hippuric acid a less lipophilic conjugate that can be more readily transported out of the mitochondria. Although organic anion transporters can export benzoate from the matrix, this process would likely be futile because benzoic acid can simply diffuse back into the matrix. Hippurate, however, is significantly less lipophilic and therefore less capable of diffusing into the matrix. It is therefore not the transport out of the mitochondrial matrix that is facilitated by glycine conjugation, but rather the ability of the glycine conjugates to re-enter the matrix that is decreased. Lastly, glycine conjugation of benzoate also exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated. To date, no defect of the glycine conjugation pathway has been reported and this, together with the fact that GLYAT plays an important role in hepatic metabolism, suggests that this pathway is essential for survival. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development and mitochondrial energy metabolism. Significant interindividual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. The main aim of this thesis was to investigate and characterise the genetic variation in the coding region of the GLYAT gene. This was accomplished by firstly, investigating the influence of non-synonymous single nucleotide polymorphisms (SNPs) on the enzyme activity of a recombinant human GLYAT and secondly, by analysing the level of genetic variation in the coding region of the GLYAT gene using existing worldwide population data. To investigate the influence of non-synonymous SNPs in the GLYAT gene on the enzyme activity, a recombinant human GLYAT was prepared, and characterised. Site-directed mutagenesis was used to generate six variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. The results showed that SNP variations in the human GLYAT gene can influence the kinetic properties of the enzyme. The genetic variation data of the human GLYAT open reading frame (ORF) available on public databases was investigated by formulating the hypothesis that due to the essential nature of the glycine conjugation pathway, the genetic variation in the ORF of the GLYAT gene should be low and that deleterious alleles will be found at low frequencies. Data from the i) 1000 Genome Project, ii) the HapMap Project, and iii) the Khoi-San/Bantu Sequencing Project was downloaded from available databases. Sequence data of the coding region of a small cohort of South African Afrikaner Caucasian individuals was also generated and included in the analyses. In the GLYAT ORF of the 1537 individuals analysed, only two haplotypes (S156 and T17S156) out of 14 haplotypes were identified in all populations as having the highest haplotype frequencies (70% and 20% respectively). The S156C199 and S156H131 haplotypes, which have a deleterious effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. The results of this study indicated that the GLYAT ORF is remarkably conserved, which supports the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. The findings presented in this thesis highlight the importance that future investigations should determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2015
27

Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene / Rencia van der Sluis

Van der Sluis, Rencia January 2015 (has links)
Thorough investigation of the glycine conjugation pathway has been neglected over the last 30 years. Environmental factors, nutrition, and the chronic use of medications are increasing the exposure of humans to benzoate and drugs that are metabolized to acyl-CoA intermediates. Glycine conjugation of mitochondrial acyl-CoAs, catalysed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterised in detail. Therefore, one of the objectives of this thesis was to develop a better understanding of glycine conjugation and its role in metabolism. In humans and animals a number of endogenous and xenobiotic organic acids are conjugated to glycine. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, recently it was proposed that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilised as neurotransmitters in the central nervous systems of animals. The glycine deportation hypothesis was based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. A thorough review of the literature for this thesis showed that the major role of glycine conjugation, however, is to dispose of the end products of phenylpropionate metabolism. The review also introduced the new perspective that mitochondrial glycine conjugation prevents the accumulation of benzoate in the mitochondrial matrix by forming hippuric acid a less lipophilic conjugate that can be more readily transported out of the mitochondria. Although organic anion transporters can export benzoate from the matrix, this process would likely be futile because benzoic acid can simply diffuse back into the matrix. Hippurate, however, is significantly less lipophilic and therefore less capable of diffusing into the matrix. It is therefore not the transport out of the mitochondrial matrix that is facilitated by glycine conjugation, but rather the ability of the glycine conjugates to re-enter the matrix that is decreased. Lastly, glycine conjugation of benzoate also exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated. To date, no defect of the glycine conjugation pathway has been reported and this, together with the fact that GLYAT plays an important role in hepatic metabolism, suggests that this pathway is essential for survival. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development and mitochondrial energy metabolism. Significant interindividual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. The main aim of this thesis was to investigate and characterise the genetic variation in the coding region of the GLYAT gene. This was accomplished by firstly, investigating the influence of non-synonymous single nucleotide polymorphisms (SNPs) on the enzyme activity of a recombinant human GLYAT and secondly, by analysing the level of genetic variation in the coding region of the GLYAT gene using existing worldwide population data. To investigate the influence of non-synonymous SNPs in the GLYAT gene on the enzyme activity, a recombinant human GLYAT was prepared, and characterised. Site-directed mutagenesis was used to generate six variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. The results showed that SNP variations in the human GLYAT gene can influence the kinetic properties of the enzyme. The genetic variation data of the human GLYAT open reading frame (ORF) available on public databases was investigated by formulating the hypothesis that due to the essential nature of the glycine conjugation pathway, the genetic variation in the ORF of the GLYAT gene should be low and that deleterious alleles will be found at low frequencies. Data from the i) 1000 Genome Project, ii) the HapMap Project, and iii) the Khoi-San/Bantu Sequencing Project was downloaded from available databases. Sequence data of the coding region of a small cohort of South African Afrikaner Caucasian individuals was also generated and included in the analyses. In the GLYAT ORF of the 1537 individuals analysed, only two haplotypes (S156 and T17S156) out of 14 haplotypes were identified in all populations as having the highest haplotype frequencies (70% and 20% respectively). The S156C199 and S156H131 haplotypes, which have a deleterious effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. The results of this study indicated that the GLYAT ORF is remarkably conserved, which supports the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. The findings presented in this thesis highlight the importance that future investigations should determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2015
28

Molecular characterisation of glycine-N-acyltransferase from two primates : the vervet monkey and the chacma baboon / Cornelius Mthiuzimele Mahlanza

Mahlanza, Mthiuzimele Cornelius January 2011 (has links)
Glycine-N-acyltransferase (GLYAT, EC 2.3.1.13) has been characterised in a number of species including: humans, chimpanzees, rhesus monkeys and bovines. The characterisation of GLYAT from various species contributes to a better understanding of the diversity of the enzyme which in turn might help improve the current understanding of detoxification in mammals. The GLYAT enzyme of both the chacma baboon and vervet monkey has not been characterised. In this project, tissue samples were obtained from a chacma baboon (Papio ursinus) and a vervet monkey (Chlorocebus pygerythrus) to determine the nucleic acid sequence that encodes GLYAT in these two species to broaden our current understanding on the diversity of GLYAT in primates. A liver of a chacma baboon was used to extract total RNA. Complementary DNA (cDNA) was synthesised using an oligo (dT) primer. An open reading frame (ORF) encoding GLYAT of the chacma baboon was amplified with a PCR (polymerase chain reaction) using primers designed from a human GLYAT transcript. The PCR product containing an ORF encoding GLYAT of the chacma baboon was cloned, sequenced and expressed. The recombinant GLYAT of the chacma baboon expressed well in bacteria, but was insoluble and did not have enzyme activity. A crude cytoplasmic extract was prepared from the liver of a chacma baboon. The objective was to compare enzyme activity between the native and recombinant GLYAT. The prepared liver extract from the chacma baboon was assayed for enzyme activity and compared to the activity in a liver extract from bovine, previously prepared by Ms M Snyders. Both the chacma baboon and bovine liver extracts had GLYAT enzyme activity. To obtain sequence information on vervet monkey GLYAT, leukocytes were isolated from blood obtained from a living vervet monkey. A human GLYAT gene sequence was used as a reference DNA sequence in the design of PCR primers that were used to amplify the exons of GLYAT of the vervet monkey. All six GLYAT exons were individually amplified and PCR products were sequenced. The sequences were combined to reconstruct an ORF encoding GLYAT of the vervet monkey. The ORFs coding the GLYAT of both chacma baboon and vervet monkey were found to be 888 bp long (excluding stop codon) and encoded a protein of 296 amino acids. A fragment of 1256 bp of the chacma baboon GLYAT transcript was sequenced. The two GLYAT ORF sequences were translated to amino acid sequences and aligned to that of GLYAT of primates obtained from the Ensembl sequence database. The GLYAT amino acid sequences of the chacma baboon, vervet monkey and rhesus monkey formed a related group, distinct from other primates. The chacma baboon and vervet monkey sequences were 99 % identical to the rhesus monkey sequence and 92.6 % identical to the human sequence. There were 4 new variations introduced by GLYAT amino acid sequences from the chacma baboon and the vervet monkey. The vervet monkey introduced an isoleucine in place of a valine at position 32 and an arginine in place of a histidine or glutamine at position 224. The chacma baboon introduced a tyrosine in place of isoleucine at position 201 and an arginine in place of histidine or glutamine at position 240. The knowledge generated in this project will broaden the understanding of GLYAT diversity relating to GLYAT in primates. / Thesis (M.Sc. (Biochemistry))--North-West University, Potchefstroom Campus, 2011
29

INCREASING RENEWABLE OIL CONTENT AND UTILITY

Serson, William Richard 01 January 2017 (has links)
Since the dawn of agriculture man has been genetically modifying crop plants to increase yield, quality and utility. In addition to selective breeding and hybridization we can utilize mutant populations and biotechnology to have greater control over crop plant modification than ever before. Increasing the production of plant oils such as soybean oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. We show that by manipulating a highly active acyl-CoA: diacylglycerol acyltransferase (DGAT) the hydrocarbon flux to oil in oilseeds can be increased without reducing the protein component. Compared to other plant DGATs, a DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in yeast, insect cells and soybean. Soybean lines expressing VgDGAT1A show a 4% increase in oil content without reductions in seed protein contents or yield per unit land area. Furthermore, we have screened a soybean fast neutrino population derived from M92-220 variety and found three high oil mutants that do not have reduced levels of protein. From the F2 plant populations we quantitatively pooled the high oil and low oil plants and performed comparative genomics hybridization (CGH). From the data it appears that two families have a 0.3 kb aberration in chromosome 14. We are performing further analysis to study this aberration and develop markers for molecular breeding. Mutagenic techniques are also useful for developing other traits such as early flowering varieties and adapting new high oil crops to a new region. Chia (Salvia hispanica) is an ancient crop that has experienced an agricultural resurgence in recent decades due to the high omega 3 fatty acid (ω-3) content of the seeds and good production potential. The area of cultivation has been expanded to Kentucky using mutagenized populations and the composition traits are similar to that of the original regions of cultivation in Central and South America.
30

IMPACT OF A HIGH OIL AND PROTEIN ON AGRONOMIC TRAITS AND OVERALL SEED COMPOSITION IN SOYBEAN

AL-Amery, Maythem 01 January 2017 (has links)
New soybean lines have been developed with significantly higher oil, protein + oil and higher meal protein. These soybeans contain a VgD1 gene (highly active acyl-CoA:diacylglycerol acyltransferase, DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in soybean. Soybean with active DGAT from Vernonia galamensis (VgDGAT1A) has active TAG biosynthesis relative to other DGATs including from soybeans and Arabidopsis. DGATs catalyze the final step of TAG synthesis: DAG (diacylglycerol) + acyl-CoA → TAG + CoASH (Coenzyme A is notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle). A thorough analysis of the major components in VgD1 lines, especially those of nutritional or anti-nutritional value including what else changed (decreased); and what remained at normal levels was conducted. A field study was conducted in Spindletop and Princeton KY, reviled no reduction in yield nor protein, and about 4 % (DW) more oil was obtained in Princeton and 2% (DW) in Spindeltop. No consistent reduction in the other seed composition.VgDGAT1A soybean lines indicated noticeably early maturation compared to the parental line. This is associated with higher expression of the flowering genes FT2 (FLOWERING LOCUS T2) and FT5 (FLOWERING LOCUS T5), for the high oil lines. A single recessive mutation in soybean (MIPS) myo-inositol 1-phosphate synthase, confers a seed phenotype of increase inorganic phosphate (Pi) crossed with high oil lines expressing a DGAT from Vernonia galamensis (VgDGAT1A) (VgD). The oil and protein were maintained compart to VgD. VgD X MIPS (VM), had 21.2, and 22 % oil in 2015, and 23.3 and 24.0 oil in 2016, and protein 46, 49 in 2015, and 37 and 39 % in 2016. Phosphate results suggesting the cross MV is still segregating for MIPS and more selection and planting are needed. Measurement of seed phosphate levels is an established technique for screening for low phytate mutants but to date, it has not been performed non-destructively from single soybean seeds. A protocol was developed greatly reducing the sample size thereby reducing the cost and time and saving a generation in the selection of low phytate mutant seeds based on the high Pi phenotype. Genotyping single seeds are useful in breeding and genetics while maintaining high germination rates. Nondestructive single-seed genomic DNA extraction protocols using 12 mg cotyledon tissue with a modified cetyl trimethyl ammonium bromide (CTAB) technique and a commercial seed DNA extraction kit using 1 mg cotyledon tissue were developed for dry soybean seeds and cross-verified with leaf DNA analysis.

Page generated in 0.0837 seconds