• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 306
  • 34
  • 25
  • 21
  • 12
  • 12
  • 10
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 523
  • 523
  • 523
  • 241
  • 200
  • 147
  • 145
  • 116
  • 110
  • 104
  • 83
  • 70
  • 55
  • 53
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Spline Based Intrusion Detection in Vehicular Ad Hoc Networks (VANET)

Schmidt, David A., Khan, Mohammad S., Bennett, Brian T. 01 April 2019 (has links)
Intrusion detection systems (IDSs) play a crucial role in the identification and mitigation for attacks on host systems. Of these systems, vehicular ad hoc networks (VANETs) are particularly difficult to protect due to the dynamic nature of their clients and their necessity for constant interaction with their respective cyber-physical systems. Currently, there is a need for a VANET-specific IDS that can satisfy these requirements. Spline function-based IDSs have shown to be effective in traditional network settings. By examining the various construction of splines and testing their robustness, the viability for a spline-based IDS can be determined.
272

Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles

Kuiper, Erik January 2008 (has links)
Technology has reached a point where it has become feasible to develop unmanned aerial vehicles (UAVs), that is aircraft without a human pilot on board. Given that future UAVs can be autonomous and cheap, applications of swarming UAVs are possible. In this thesis we have studied a reconnaissance application using swarming UAVs and how these UAVs can communicate the reconnaissance data. To guide the UAVs in their reconnaissance mission we have proposed a pheromone based mobility model that in a distributed manner guides the UAVs to areas not recently visited. Each UAV has a local pheromone map that it updates based on its reconnaissance scans. The information in the local map is regularly shared with a UAV’s neighbors. Evaluations have shown that the pheromone logic is very good at guiding the UAVs in their cooperative reconnaissance mission in a distributed manner. Analyzing the connectivity of the UAVs we found that they were heavily partitioned which meant that contemporaneous communication paths generally were not possible to establish. This means that traditional mobile ad hoc network (MANET) routing protocols like AODV, DSR and GPSR will generally fail. By using node mobility and the store-carry-forward principle of delay-tolerant routing the transfer of messages between nodes is still possible. In this thesis we propose location aware routing for delay-tolerant networks (LAROD). LAROD is a beacon-less geographical routing protocol for intermittently connected mobile ad hoc networks. Using static destinations we have shown by a comparative study that LAROD has almost as good delivery rate as an epidemic routing scheme, but at a substantially lower overhead. / <p>Report code: LiU-Tek-Lic-2008:14</p>
273

Robust Ant Colony Based Routing Algorithm For Mobile Ad-Hoc Networks

Sharma, Arush S. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis discusses about developing a routing protocol of mobile ad hoc networks in a bio inspired manner. Algorithms inspired by collective behaviour of social insect colonies, bird flocking, honey bee dancing, etc., promises to be capable of catering to the challenges faced by tiny wireless sensor networks. Challenges include but are not limited to low bandwidth, low memory, limited battery life, etc. This thesis proposes an energy efficient multi-path routing algorithm based on foraging nature of ant colonies and considers many other meta-heuristic factors to provide good robust paths from source node to destination node in a hope to overcome the challenges posed by resource constrained sensors. / 2020-12-31
274

Application of Machine Learning Techniques to Delay Tolerant Network Routing

Dudukovich, Rachel 29 January 2019 (has links)
No description available.
275

Security protocols for mobile ad hoc networks

Davis, Carlton R. January 2006 (has links)
No description available.
276

Mimo Communication for Ad Hoc Networks: A Cross Layer Approach

Jaiswal, Suraj Kumar 01 January 2008 (has links) (PDF)
New technologies such as pervasive computing, ambient environment, and communication avid applications such as multimedia streaming are expected to impact the way people live and communicate in the wireless networks of the future. The introduction of these new technologies and applications is, however, a challenging task in wireless networks because of their high bandwidth requirements and Quality of Service (QoS) demands. A significant recent advance in wireless communication technology, known as Multiple-Input Multiple-Output (MIMO) provides unprecedented increase in link capacity, link reliability and network capacity. The main features of MIMO communication are spatial multiplexing, point-to-multipoint and multipoint-to-point transmission as well as interference suppression in contrast to the conventional single antenna (Single-In Single-Output, SISO) networks. In this thesis, we investigate the problem of scheduling flows for fair stream allocation (or, stream scheduling) in ad hoc networks utilizing MIMO antenna technology. Our main contributions include: i) the concept of stream allocation to flowsbased on their traffic demands or class, ii) stream allocation to flows in the network utilizing single user or multiuser MIMO communication, iii) achieving the proportional fairness of the stream allocation in the minimum possible schedule length, and iv)performance comparison of the stream scheduling in the network for single user and multiuser communication and the tradeoff involved therein. We first formulate demand based fair stream allocation as an integer linear programming (ILP) problem whose solution is a schedule that is guaranteed to be contention-free. We then solve this ILP in conjunction with binary search to find a minimum length contention-free schedule that achieves the fairness goals. Performance comparison results show the benefit of multiuser MIMO links over single user links which is predominant at higher traffic workloads in the network. We also implement a greedy heuristic for stream scheduling and compare its performance with the ILP-based algorithm in terms of the fairness goals achieved in a given schedule length. OPNET-based stochastic simulation confirms the benefits of MIMO-based stream scheduling over single antenna links, as shown by our theoretical analysis.
277

Comparing Duplexing, Multiplexing, and Multiple Access Techniques in Ad Hoc Networks

Zhang, Qian 10 June 2013 (has links)
No description available.
278

A Hop-by-Hop Architecture for Multicast Transport in Ad Hoc Wireless Networks

Pandey, Manoj Kumar 29 July 2009 (has links) (PDF)
Ad hoc wireless networks are increasingly being used to provide connectivity where a wired networking infrastructure is either unavailable or inaccessible. Many deployments utilize group communication, where several senders communicate with several receivers; multicasting has long been seen as an efficient way to provide this service. While there has been a great deal of research on multicast routing in ad hoc networks, relatively little attention has been paid to the design of multicast transport protocols, which provide reliability and congestion control. In this dissertation we design and implement a complete multicast transport architecture that includes both routing and transport protocols. Our multicast transport architecture has three modules: (a) a multicast routing and state setup protocol, (b) a mobility detection algorithm, and (c) a hop-by-hop transport protocol. The multicast routing and state setup protocol, called ASSM, is lightweight and receiver-oriented, making it both efficient and scalable. A key part of ASSM is its use of Source Specific Multicast semantics to avoid broadcasting when searching for sources. ASSM also uses routes provided by the unicast protocol to greatly reduce routing overhead. The second module, MDA, solves the problem of determining the cause of frame loss and reacting properly. Frame loss can occur due to contention, a collision, or mobility. Many routing protocols make the mistake of interpreting all loss as due to mobility, resulting in significant overhead when they initiate a repair that is not required. MDA enables routing protocols to react to frame loss only when necessary. The third module is a hop-by-hop multicast transport protocol, HCP. A hop-by-hop algorithm has a faster response time than that of an end-to-end algorithm, because it invokes congestion control at each hop instead of waiting for an end-to-end response. An important feature of HCP is that it can send data at different rates to receivers with different available bandwidth. We evaluate all three components of this architecture using simulations, demonstrating the improved performance, efficiency and scalability of our architecture as compared to other solutions.
279

Virtual Router Approach For Wireless Ad Hoc Networks

Ho, Ai Hua 01 January 2011 (has links)
Wireless networks have become increasingly popular in recent years. There are two variations of mobile wireless networks: infrastructure mobile networks and infrastructureless mobile networks. The latter are also known as mobile ad hoc network (MANET). MANETs have no fixed routers. Instead, mobile nodes function as relay nodes or routers, which discover and maintain communication connections between source nodes and destination nodes for various data transmission sessions. In other words, an MANET is a self-organizing multi-hop wireless network in which all nodes within a given geographical area participate in the routing and data forwarding process. Such networks are scalable and self-healing. They support mobile applications where an infrastructure is either not available (e.g., rescue operations and underground networks) or not desirable (e.g., harsh industrial environments). In many ad hoc networks such as vehicular networks, links among nodes change constantly and rapidly due to high node speed. Maintaining communication links of an established communication path that extends between source and destination nodes is a significant challenge in mobile ad hoc networks due to movement of the mobile nodes. In particular, such communication links are often broken under a high mobility environment. Communication links can also be broken by obstacles such as buildings in a street environment that block radio signal. In a street environment, obstacles and fast moving nodes result in a very short window of communication between nodes on different streets. Although a new communication route can be established when a break in the communication path occurs, repeatedly reestablishing new routes incurs delay and substantial overhead. To address this iv limitation, we introduce the Virtual Router abstraction in this dissertation. A virtual router is a dynamically-created logical router that is associated with a particular geographical area. Its routing functionality is provided by the physical nodes (i.e., mobile devices) currently within the geographical region served by the virtual router. These physical nodes take turns in forwarding data packets for the virtual router. In this environment, data packets are transmitted from a source node to a destination node over a series of virtual routers. Since virtual routers do not move, this scheme is much less susceptible to node mobility. There can be two virtual router approaches: Static Virtual Router (SVR) and Dynamic Virtual Router (DVR). In SVR, the virtual routers are predetermined and shared by all communication sessions over time. This scheme requires each mobile node to have a map of the virtual routers, and use a global positioning system (GPS) to determine if the node is within the geographical region of a given router. DVR is different from SVR with the following distinctions: (1) virtual routers are dynamically created for each communication sessions as needed, and deprecated after their use; (2) mobile nodes do not need to have a GPS; and (3) mobile nodes do not need to know whereabouts of the virtual routers. In this dissertation, we apply Virtual Router approach to address mobility challenges in routing data. We first propose a data routing protocol that uses SVR to overcome the extreme fast topology change in a street environment. We then propose a routing protocol that does not require node locations by adapting a DVR approach. We also explore how the Virtual Router Approach can reduce the overhead associated with initial route or location requests used by many existing routing protocols to find a destination. An initial request for a destination is expensive v because all the nodes need to be reached to locate the destination. We propose two broadcast protocols; one in an open terrain environment and the other in a street environment. Both broadcast protocols apply SVR. We provide simulation results to demonstrate the effectiveness of the proposed protocols in handling high mobility. They show Virtual Router approach can achieve several times better performance than traditional routing and broadcast approach based on physical routers (i.e., relay nodes)
280

Mitigating Misbehavior In Wireless Networks: A Game Theoretic Approach

Wang, Wenjing 01 January 2010 (has links)
In a distributed wireless system, multiple network nodes behave cooperatively towards a common goal. Though such assumptions on cooperation are desirable (e.g., controlling the transmit power level, reducing interference for each other, revealing private information, adhering to network policies) for analyzing and modeling, certain nodes belonging to a real-world system have often shown to deviate. These nodes, known as misbehaving nodes, bring more challenges to the design of the wireless network because the unreliable channel makes the actions of the nodes hidden from each other. In this dissertation, we analyze two types of misbehavior, namely, selfish noncooperation and malicious attacking. We apply game theoretic techniques to model the interactions among the nodes in the network. First, we consider a homogeneous unreliable channel and analyze the necessary and sufficient conditions to enforce cooperative packet forwarding among a node pair. We formulate an anti-collusion game and derive the conditions that achieve full cooperation when the non-cooperative nodes collude. In addition, we consider multi-hop communication with a heterogeneous channel model. We refine our game model as a hidden action game with imperfect private monitoring. A state machine based strategy is proposed to reach Nash Equilibrium. The strategy attains cooperative packet forwarding with heterogeneous channel and requires only partial and imperfect information. Furthermore, it also enforces cooperation in multi-hop packet forwarding. To tackle the malicious attacks, we use Bayesian game analysis to show the existence of equilibrium in the detection game and argue that it might not be profitable to isolate the malicious nodes upon detection. We propose the concept of "coexistence with malicious nodes" by proving the co-existence equilibrium and derive the conditions that achieve the equilibrium. This research is further accomplished by extensive simulation studies. Simulation results illustrate the properties of the games and the derived equilibria. The results validate our design philosophy and clearly indicate that the proposed game theoretic solutions can be effectively used to enforce cooperation and mitigate attacks.

Page generated in 0.101 seconds