Spelling suggestions: "subject:"adaptive histogram equalization"" "subject:"adaptive histogram squalization""
1 |
Adaptivní ekvalizace histogramu digitálních obrazů / Adaptive histogram equalization for digital images processingKvapil, Jiří January 2009 (has links)
The diploma thesis is focused on histogram equalization method and his extension by the adaptive boundary. This thesis contains explanations of basic notions on that histogram equalization method was created. Next part is described the human vision and priciples of his imitation. In practical part of this thesis was created software that makes it possible to use methods of adaptive histogram equalization on real images. At the end is showed some results that was reached.
|
2 |
Classification of Dense Masses in MammogramsNaram, Hari Prasad 01 May 2018 (has links) (PDF)
This dissertation material provided in this work details the techniques that are developed to aid in the Classification of tumors, non-tumors, and dense masses in a Mammogram, certain characteristics such as texture in a mammographic image are used to identify the regions of interest as a part of classification. Pattern recognizing techniques such as nearest mean classifier and Support vector machine classifier are also used to classify the features. The initial stages include the processing of mammographic image to extract the relevant features that would be necessary for classification and during the final stage the features are classified using the pattern recognizing techniques mentioned above. The goal of this research work is to provide the Medical Experts and Researchers an effective method which would aid them in identifying the tumors, non-tumors, and dense masses in a mammogram. At first the breast region extraction is carried using the entire mammogram. The extraction is carried out by creating the masks and using those masks to extract the region of interest pertaining to the tumor. A chain code is employed to extract the various regions, the extracted regions could potentially be classified as tumors, non-tumors, and dense regions. Adaptive histogram equalization technique is employed to enhance the contrast of an image. After applying the adaptive histogram equalization for several times which will provide a saturated image which would contain only bright spots of the mammographic image which appear like dense regions of the mammogram. These dense masses could be potential tumors which would need treatment. Relevant Characteristics such as texture in the mammographic image are used for feature extraction by using the nearest mean and support vector machine classifier. A total of thirteen Haralick features are used to classify the three classes. Support vector machine classifier is used to classify two class problems and radial basis function (RBF) kernel is used to find the best possible (c and gamma) values. Results obtained in this research suggest the best classification accuracy was achieved by using the support vector machines for both Tumor vs Non-Tumor and Tumor vs Dense masses. The maximum accuracies achieved for the tumor and non-tumor is above 90 % and for the dense masses is 70.8% using 11 features for support vector machines. Support vector machines performed better than the nearest mean majority classifier in the classification of the classes. Various case studies were performed using two distinct datasets in which each dataset consisting of 24 patients’ data in two individual views. Each patient data will consist of both the cranio caudal view and medio lateral oblique views. From these views the region of interest which could possibly be a tumor, non-tumor, or a dense regions(mass).
|
3 |
Image Enhancement & Automatic Detection of Exudates in Diabetic RetinopathyMallampati, Vivek January 2019 (has links)
Diabetic retinopathy (DR) is becoming a global health concern, which causes the loss of vision of most patients with the disease. Due to the vast prevalence of the disease, the automated detection of the DR is needed for quick diagnoses where the progress of the disease is monitored by detection of exudates changes and their classifications in the fundus retina images. Today in the automated system of the disease diagnoses, several image enhancement methods are used on original Fundus images. The primary goal of this thesis is to make a comparison of three of popular enhancement methods of the Mahalanobis Distance (MD), the Histogram Equalization (HE) and the Contrast Limited Adaptive Histogram Equalization (CLAHE). By quantifying the comparison in the aspect of the ability to detect and classify exudates, the best of the three enhancement methods is implemented to detect and classify soft and hard exudates. A graphical user interface is also adopted, with the help of MATLAB. The results showed that the MD enhancement method yielded better results in enhancement of the digital images compared to the HE and the CLAHE. The technique also enabled this study to successfully classify exudates into hard and soft exudates classification. Generally, the research concluded that the method that was suggested yielded the best results regarding the detection of the exudates; its classification and management can be suggested to the doctors and the ophthalmologists.
|
4 |
Adaptivní filtry pro 2-D a 3-D zpracování digitálních obrazů / Adaptive Filters for 2-D and 3-D Digital Images ProcessingMartišek, Karel January 2012 (has links)
Práce se zabývá adaptivními filtry pro vizualizaci obrazů s vysokým rozlišením. V teoretické části je popsán princip činnosti konfokálního mikroskopu a matematicky korektně zaveden pojem digitální obraz. Pro zpracování obrazů je volen jak frekvenční přístup (s využitím 2-D a 3-D diskrétní Fourierovy transformace a frekvenčních filtrů), tak přístup pomocí digitální geometrie (s využitím adaptivní ekvalizace histogramu s adaptivním okolím). Dále jsou popsány potřebné úpravy pro práci s neideálními obrazy obsahujícími aditivní a impulzní šum. Závěr práce se věnuje prostorové rekonstrukci objektů na základě jejich optických řezů. Veškeré postupy a algoritmy jsou i prakticky zpracovány v softwaru, který byl vyvinut v rámci této práce.
|
5 |
Real-time facial expression analysis : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in Computer Science at Massey University, Auckland, New ZealandFan, Chao January 2008 (has links)
As computers have become more and more advanced, with even the most basic computer capable of tasks almost unimaginable only a decade ago, researchers and developers are focusing on improving the way that computers interact with people in their everyday lives. A core goal, therefore, is to develop a computer system which can understand and react appropriately to natural human behavior. A key requirement for such a system is the ability to automatically, and in real time, recognises human facial expressions. In addition, this must be successfully achieved regardless of the inherent differences in human faces or variations in lighting and other external conditions. The focus of this research was to develop such a system by evaluating and then utilizing the most appropriate of the many image processing techniques currently available, and, where appropriate, developing new methodologies and algorithms. The first key step in the system is to recognise a human face with acceptable levels of misses and false positives. This research analysed and evaluated a number of different face detection techniques, before developing a novel algorithm which combined phase congruency and template matching techniques. This novel algorithm provides key advantages over existing techniques because it can detect faces rotated to any angle, and it works in real time. Existing techniques could only recognise faces which were rotated less than 10 degrees (in either direction) and most could not work in real time due to excessive computational power requirements. The next step for the system is to enhance and extract the facial features. To successfully achieve the stated goal, the enhancement and extraction of the facial features must reduce the number of facial dimensions to ensure the system can operate in real time, as well as providing sufficient clear and detailed features to allow the facial expressions to be accurately recognised. This part of the system was successfully completed by developing a novel algorithm based on the existing Contrast Limited Adaptive Histogram Equalization technique which quickly and accurately represents facial features, and developing another novel algorithm which reduces the number of feature dimensions by combining radon transformation and fast Fourier transformation techniques, ensuring real time operation is possible. The final step for the system is to use the information provided by the first two steps to accurately recognise facial expressions. This is achieved using an SVM trained using a database including both real and computer generated facial images with various facial expressions. The system developed during this research can be utilised in a number of ways, and, most significantly, has the potential to revolutionise future interactions between humans and computers by assisting these reactions to become natural and intuitive. In addition, individual components of the system also have significant potential, with, for example, the algorithms which allow the recognition of an object regardless of its rotation under consideration as part of a project aiming to achieve non-invasive detection of early stage cancer cells.
|
6 |
使用適應性直方圖均衡化之加速與風格化淺浮雕生成 / Fast and stylized bas-relief generation using adaptive histogram equalization黃嗣心, Huang, Ssu Shin Unknown Date (has links)
浮雕是雕刻藝術中重要的表現方法,藉由在平板上雕刻出高低落差,傳達出豐富的形狀視覺線索,是介於3D雕塑和2D畫作中間的一種物體外形的表現方式。本論文將針對淺浮雕這類型相對高度較低的浮雕技法,將要表達的3D場景壓縮到接近平面但盡可能保留細節。我們使用適應性直方圖均衡化技術去壓縮高度的動態範圍並盡可能強化細節,且經由降低取樣點數量的技巧加速適應性直方圖均衡化的計算,以利於使用者進行互動性自訂風格化。另外依照場景特徵的流向,增加特殊的刻紋去豐富淺浮雕的風格表現。 / Relief is a sculptural technique to express the shape feature on a flat surface. It is an art medium between 3D sculpture and 2D painting. In this thesis, we focus on bas-relief, which is a relatively low relief to compress the depth of 3D scene to a shallow overall depth and preserve details of the shape. We use the adaptive histogram equalization (AHE) to compress the depth range and enhance details, and accelerate the AHE computation by sample reduction, which is in favor of the user interaction of custom stylization. Furthermore, adding special carving patterns according to feature flows of the scene enriches the stylization of the relief generation.
|
7 |
Adaptive Filters for 2-D and 3-D Digital Images Processing / Adaptive Filters for 2-D and 3-D Digital Images ProcessingMartišek, Karel January 2012 (has links)
Práce se zabývá adaptivními filtry pro vizualizaci obrazů s vysokým rozlišením. V teoretické části je popsán princip činnosti konfokálního mikroskopu a matematicky korektně zaveden pojem digitální obraz. Pro zpracování obrazů je volen jak frekvenční přístup (s využitím 2-D a 3-D diskrétní Fourierovy transformace a frekvenčních filtrů), tak přístup pomocí digitální geometrie (s využitím adaptivní ekvalizace histogramu s adaptivním okolím). Dále jsou popsány potřebné úpravy pro práci s neideálními obrazy obsahujícími aditivní a impulzní šum. Závěr práce se věnuje prostorové rekonstrukci objektů na základě jejich optických řezů. Veškeré postupy a algoritmy jsou i prakticky zpracovány v softwaru, který byl vyvinut v rámci této práce.
|
8 |
Ανάπτυξη τεχνικών επεξεργασίας ιατρικών δεδομένων και συστημάτων υποστήριξης της διάγνωσης στη γυναικολογίαΒλαχοκώστα, Αλεξάνδρα 25 May 2015 (has links)
Η αυτόματη επεξεργασία εικόνων του ενδομητρίου αποτελεί ένα δύσκολο και πολυδιάστατο πρόβλημα, το οποίο έχει απασχολήσει πλήθος ερευνητών και για το οποίο έχει αναπτυχθεί μεγάλος αριθμός τεχνικών.
Στην παρούσα διατριβή, παρουσιάζεται μια μεθοδολογική προσέγγιση, η οποία βασίζεται στη χρήση αλγορίθμων ψηφιακής επεξεργασίας και ανάλυσης εικόνων, για την αυτόματη εκτίμηση χαρακτηριστικών που περιγράφουν την αγγείωση και την υφή εικόνων του ενδομητρίου. Αφορμή της μελέτης αποτελεί ο ρόλος που διαπιστώνεται ότι διαδραματίζει η μεταβολή των τιμών των εν λόγω χαρακτηριστικών στην έγκαιρη διάγνωση των παθήσεων του ενδομητρίου.
Στα πλαίσια της διατριβής, υλοποιήθηκε κατάλληλη μεθοδολογία για τον υπολογισμό ενός συνόλου χαρακτηριστικών τόσο για υστεροσκοπικές εικόνες, όσο και για ιστολογικές εικόνες του ενδομητρίου. Ιδιαίτερη βαρύτητα δόθηκε στην προ – επεξεργασία των εικόνων προκειμένου να προκύψει βελτίωση της ποιότητας καθώς και ενίσχυση της αντίθεσης αυτών. Στη συνέχεια, ανιχνεύτηκαν τα σημεία που αποτελούν τους κεντρικούς άξονες των υπό εξέταση αγγείων με χρήση διαφορικού λογισμού για τις υστεροσκοπικές εικόνες και υπολογίστηκε ένα σύνολο χαρακτηριστικών μεγεθών που περιγράφουν την αγγείωση και την υφή των εικόνων τόσο για τις υστεροσκοπικές όσο και για τις ιστολογικές εικόνες. Τέλος, εφαρμόστηκαν κατάλληλοι αλγόριθμοι με σκοπό την κατηγοριοποίηση των υστεροσκοπικών και των ιστολογικών εικόνων και συγκεκριμένα τον διαχωρισμό των παθολογικών και των φυσιολογικών εικόνων του ενδομητρίου. Παράλληλα, χρησιμοποιήθηκε η ROC ανάλυση στην απεικόνιση και ανάλυση της συμπεριφοράς των εν λόγω κατηγοριοποιητών. / Automatic analysis of the endometrial images is a difficult and multidimensional problem. For this reason, the number of papers and techniques regarding this issue is numerous.
In this Thesis, a methodology is presented, based on advance image processing techniques in order to automatically estimate texture and vessel’s features in endometrial images. Motivation for the Thesis is the fact that the variation of the measurements of the specific features plays significant role in the seasonable diagnosis of endometrial disorders.
Throughout this Thesis, an appropriate methodology is developed in order to estimate the features for the hysteroscopical and histological images of the endometrium. An important step is the pre – processing of the images in order to enhance the image quality and the image contrast. Then, the pixels that constitute the centerlines of vessels are detected by using differential calculus for the hysteroscopical images, only. Furthermore, the texture and vessel’s features in hysteroscopical and histological images are estimated. Finally, appropriate algorithms are applied in order to classify the hysteroscopical and histological images and distinguish pathological and normal endometrial images. ROC analysis is used in order to evaluate the discrimination power of the features that were estimated.
|
Page generated in 0.1244 seconds