• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 21
  • 12
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 40
  • 38
  • 33
  • 32
  • 32
  • 29
  • 27
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Design and Implementation of the Tip/Tilt Compensation System for Raven, a Multi-Object Adaptive Optics System

Nash, Reston 22 April 2014 (has links)
Multi-Object Adaptive Optics promises to be a useful tool for the upcoming class of Extremely Large Telescopes. Like current adaptive optics systems, MOAO systems compensate optical aberrations caused by atmospheric turbulence, but with the added benefit of being able to compensate multiple portions of a telescope’s field at the same time. To ensure the success of the eventual MOAO systems built for the ELTs, several demonstrator instruments have been designed and tested on current telescopes. Raven is one of these demonstrators, designed by the University of Victoria Adaptive Optics Lab for the Subaru 8.2 meter telescope to feed the InfraRed Camera and Spectrograph. Raven corrects the light of two science targets using wavefront information from three natural guide stars, and a single laser guide star. The topic of this thesis is the design and implementation of Raven’s tip/tilt compensation system, used to stabilize the output image positions on IRCS’s 0.140” slit. Tip/tilt correction of the science targets is done using a combination of motorized pick-off arms, piezoelectric tip/tilt platforms, and deformable mirrors. Through digital filtering and calibration, it is shown that these actuators are able to collectively keep the output science images stationary during simulated laboratory observations. A performance reduction due to residual tip/tilt errors is expected to be less than 5%. Raven goes on-sky in mid-2014, and it will be the first MOAO instrument to attempt scientific observations. / Graduate / 0548 / 0606
82

A search for debris disks with a dual channel adaptive optics imaging polarimeter

Potter, Daniel Edward 05 1900 (has links)
A dual channel polarimeter was incorporated into the Hokupa'a adaptive optics system mounted on the Gemini North telescope to enhance sensitivity to detecting the light scattered by circumstellar material. The technique suppressed noise introduced by non-repeatable variations of the point spread function which limit the sensitivity of non-simultaneous adaptive optics imaging. Polarimetric images of the classical T-Tauri star environments around GG Tauri Aab, TW Hydrae, LkCa 15, LkHα 242, GM Aurigae, and SR24 N/S were observed to establish the instrument's sensitivity. A survey of nearby ( d < 25 pc), young ( age < 1 Gyr), solar-analog stars was undertaken with the polarimeter to search for collisionally active debris disks analogous to our young solar system. Of the 24 stars sampled, none were found to have obvious scattered light signatures. Isotropic and Mie scattering model images of debris disks were used to constrain the amount of material around the survey stars to no more than M dust ∼ 10 -2 M Moon of 1-10μ m sized dust contained between 5-50 AU from the sample stars. Particle lifetimes under the influence of the Poynting Robertson Drag, radiation pressure, and solar wind drag are calculated as a function of central star spectral type. The corpuscular drag from stellar winds shorten dust lifetimes by an amount inversely proportional to the stellar wind mass-loss rate. This translates into dust lifetimes 100-1000 times shorter around young solar analog stars compared to the present day. This effect, cam significantly reduce the near-IR detectability of debris disks around these chromospherically active stars.
83

Atmospheric Turbulence Characterisation Using Scintillation Detection and Ranging

Mohr, Judy Lynette January 2009 (has links)
Astronomical images taken by ground-based telescopes are subject to aberrations induced by the Earth's atmosphere. Adaptive optics (AO) provides a real-time solution to compensate for aberrated wavefronts. The University of Canterbury would like to install an AO system on the 1-m McLellan telescope at Mount John University Observatory (MJUO). The research presented in this thesis is the first step towards this goal. To design an effective AO system it is important to understand the characteristics of the optical turbulence present at a site. Scintillation detection and ranging (SCIDAR) is a remote sensing method capable of measuring the refractive index structure constant, Cn2(h), and the wind velocity profile, V(h). The dominant near ground turbulence (NGT) at MJUO required the use of both pupil-plane and generalised SCIDAR. A purpose-built SCIDAR system was designed and constructed at low cost, using primarily off-the-shelf components. UC-SCIDAR saw first light at MJUO in 2003, and has since undergone several revisions. The current version employs two channels for simultaneous pupil-plane and generalised SCIDAR measurements, and is very portable. Through the use of a different mounting plate the system could be easily placed onto any telescope. Cn2(h) profiling utilised standard analysis techniques. V(h) profiling using data from a 1-m telescope is not common, and existing analysis techniques were extended to provide meaningful V(h) profiles, via the use of partial triplet analysis. Cn2(h) profiling between 2005 and 2007 indicate strong NGT and a weak turbulent layer located at 12 - 14 km above sea level, associated with the tropopause region. During calm weather conditions, an additional layer was detected at 6 - 7 km above sea level. V(h) profiles suggest that the tropopause layer velocity is nominally 12 - 30 m/s, and that NGT velocities range from 2 m/s to over 20 m/s, dependent on weather. Little seasonal variation was detected in either Cn2(h) or V(h) profiles. The average coherence length, $r_0$, was found to be 12+-5 cm and 7+-1 cm for pupil-plane and generalised measurements respectively, for a wavelength of 589 nm. The average isoplanatic angle, $\theta_0$, was 1.5+-0.5 arcseconds and 1.1+-0.4 arcseconds for pupil-plane and generalised profiles respectively. No seasonal trends could be established in the measurements for the Greenwood frequency, $f_G$, due to gaps present in the V(h) profiles obtained. A modified Hufnagel-Valley (HV) model was developed to describe the Cn2(h) profiles at MJUO. The estimated $r_0$ from the model is 6 cm for a wavelength of 589 nm, corresponding to an uncompensated angular resolution, $\theta_{res}$, of 2.5 arcseconds. $\theta_0$ is 0.9 arcseconds. A series of V(h) models were developed, based on the Greenwood wind model with an additional Gaussian peak located at low altitudes, to encompass the various V(h) profiles seen at MJUO. Using the modified HV model for Cn2(h) profiles and the suggested model for V(h) profiles in the presence of moderate ground wind speeds, $f_G$ is estimated at 79 Hz. The Tyler frequency, $f_T$, is estimated at 11 Hz. Due to financial considerations, it is suggested that the initial AO design for MJUO focuses on the correction of tip/tilt only, utilising self-guiding, as it is unlikely that any suitable guide stars would be sufficiently close to the science object. The low $f_T$ suggests that an AO system with a bandwidth in the order of 60 Hz would be adequate for tip/tilt correction.
84

Adaptive optics for fluorescence correlation spectroscopy / Optique adaptatif pour la spectroscopie de corrélation de fluorescence

Gallagher, Joseph 19 September 2017 (has links)
Ce projet de recherche conjugue deux aspects complémentaires : le développement d’un montage de microscopie intégrant un système d'Optique Adaptative (OA) et l’étude de masses cancéreuses (Sphéroïdes Multicellulaires) sous pression mécanique.Ces deux axes seront mutuellement bénéfiques puisque l’implémentation de l’OA rendra possible l’imagerie et les mesures physiques au sein des sphéroïdes ; d’un autre côté, l’étude des sphéroïdes permettra de caractériser les aberrations induites par ce type d’échantillons et de mieux comprendre les exigences sur le système d’OA qu’imposent l’observation de ces échantillons ainsi que les limites de la microscopie optique dans les tissus biologiques. / This research project combines two complementary aspects: the development of an assembly incorporating an Adaptive Optics microscope system and the study of cancerous masses (multicellular spheroids) under mechanical pressure.These two axes are mutually beneficial since the implementation of the adaptive optics will enable imaging and physical measurements in spheroids; On the other hand, the study of spheroids will characterize the aberrations induced by this type of samples and understand the requirements of the adaptive optics system imposed by the observation of these samples as well as the limits of optical microscopy in biological tissues.
85

Nouvelle approche de mesure de front d'onde sans analyseur pour la microscopie à deux photons : application à l'imagerie in vivo de l'hippocampe / Development of a new sensorless wavefront sensing approach for two photon microscopy : application to in vivo imaging of the hippocampus

Teixeira, Joël 26 September 2017 (has links)
L’imagerie en profondeur in vivo à deux photons est sévèrement limitée par les aberrations optiques. L'optique adaptative est maintenant une technique largement utilisée pour résoudre ce problème. Elle repose sur une des nombreuses techniques possibles de mesure de front d'onde. L'estimation du front d'onde indirecte ou sensorless présente l'avantage d'être facile à mettre en œuvre sur les systèmes existants.L'approche modale sensorless, développée initialement pour l’imagerie à deux photons par Débarre et al., est devenue une technique standard fondée sur la maximisation d'une métrique de qualité d'image telle que l'intensité moyenne de l'image.Cependant, le front d'onde indirectement inféré est influencé par l'échantillon, qui peut induire un biais fort dans l'estimation. Cet effet est connu sous le nom de dépendance en l'échantillon.Ce travail de doctorat vise à développer une approche modale sensorless améliorée qui n'est pas affectée par la dépendance en l'échantillon. J'ai d'abord étudié l'impact des aberrations et de la structure de l'échantillon sur l'intensité moyenne de l'image.Je donne une nouvelle expression analytique de l'intensité moyenne de l'image est donnée qui rend explicite l'interaction entre la forme de la PSF 3D et la distribution spatiale de l'échantillon. À partir de simulations numériques, je montre que la sensibilité de la métrique aux aberrations est préservée pour des échantillons beaucoup plus grands que la résolution spatiale. Deuxièmement, j'étudie l'approche Standard Modal Sensorless (SMS) pour différents types d'échantillons.Je caractérise le problème de la dépendance en l'échantillon induit par des structures très fluorescentes situées hors de la profondeur de focalisation.Ensuite, je montre que la technique displacement-free n’élimine pas complètement la dépendance en l'échantillon.Cette analyse aboutit au développement de notre approche nommée Axially-Locked Modal Sensorless (ALMS). Cette nouvelle approche résout la dépendance en l'échantillon par un réglage automatique et contrôlé de la profondeur de focalisation afin de verrouiller la focalisation sur des motifs brillants de l'échantillon. En outre, l'approche ALMS se fonde également sur une métrique de qualité d'image spécialement conçue pour ce verrouillage. La performance de cette approche est numériquement comparée aux approches SMS et displacement-free. Enfin, ALMS est validée par des tests expérimentaux ex vivo et in vivo. / Deep in vivo two-photon microscopy is severely limited by optical aberrations. Adaptive optics is now a widely used technique to overcome this issue. It relies on one of several possible wavefront sensing techniques. Indirect or sensorless wavefront estimation has the advantage of being easy-to-implement on existing systems. Modal sensorless approach, initially developed for two photon imaging by Débarre et al., has become a standard technique based on the maximization of an image quality metric such as the mean image intensity.However, the indirectly inferred wavefront is influenced by the sample, which may induce a strong bias in the estimation, the so-called sample dependence. This PhD work aims at developing an improved modal sensorless approach that is not affected by sample dependence.I first study the impact of aberrations and of the sample structure on the mean image intensity.A new analytical expression of the mean image intensity is given and makes explicit the interplay between the shape of the 3D PSF and the sample spatial distribution. Through numerical simulations I show that the metric sensitivity to aberrations is preserved for samples much larger than the spatial resolution.Secondly, I study the Standard Modal Sensorless (SMS) approach for different sample scenarios. I characterize the sample dependence issue induced by strong fluorescent structures located out-of-focus. Then, I show that the displacement-free technique fails at fully removing the sample dependence. This analysis leads to the development of our Axially-Locked Modal Sensorless approach (ALMS). This new approach solves the sample dependence by an automatic and controlled adjustment of the focusing depth so as to lock on bright sample features. Furthermore, the ALMS approach is based on a specifically designed image quality metric.The performance of this approach is numerically compared with the SMS and the displacement-free approaches. Finally, ALMS is demonstrated through ex vivo and in vivo experimental tests.
86

Adaptive optics for microscopy and photonic engineering

Simmonds, Richard January 2012 (has links)
Aberrations affect the operation of optical systems, particularly those designed to work at the diffraction limit. These systems include high-resolution microscopes, widely used for imaging in biology and other areas. Similar problems are encountered in photonic engineering, specifically in laser fabrication systems used for the manufacture of fine structures. The work presented in this thesis covers various aspects of adaptive optics developed for applications in microscopes and laser fabrication. By mathematically modelling a range of idealised fluorescent structures, the effect of different aberrations on their intensity in various microscopes is presented. The effect of random aberrations on the contrast of these different structures is then calculated and the results displayed on idealised images. Images from a two-photon microscope demonstrate the predicted results. The contrast of two structures is compared when imaged first by a conventional microscope and then by the two-photon or confocal sectioning microscopes. The different specimen structures were seen to be affected to varying extents by each aberration mode. In order to correct for aberrations in microscopy and other photonic applications, adaptive elements such as deformable mirrors are incorporated into the optical setups. An important step is to train the deformable mirror so that it produces appropriate mode shapes to apply a phase to optical wavefronts. One such mirror is modelled using the membrane equation to predict the surface shape when an actuator is applied. Each of these influence functions is combined to produce a set of orthogonal mirror modes, which are used to experimentally produce a set of empirical modes in a two-photon microscope. An alternative method of training a deformable mirror from a spatial light modulator is employed. The focal spot of an optical system is imaged to provide a feedback metric for the mirror to replicate the phase pattern on the spatial light modulator. A two-photon microscope with adaptive optics is demonstrated by imaging the brains of Drosophila deep within the bulk, correcting for both system and specimen induced aberrations using the deformable mirror with empirical mirror modes applied. A harmonic generation microscope is also used to image both biological and non-biological specimens whilst performing aberration correction with a deformable mirror. Adaptive optical methods are also applied to a laser fabrication system, by constructing a dual adaptive optics setup to correct for aberrations induced when fabricating deep in the bulk of a substrate. The efficiency and fidelity of fabrication in diamond substrate is shown to be significantly increased as a result of the dual aberration correction. An outstanding problem in microscopy is the effect of spatially variant aberrations. Using measurements from the adaptive microscopes, the extent to which they are present in a range of specimens is quantified. One potential technique to be used to correct for these aberrations is multi-conjugate adaptive optics. Different configurations of a multi-conjugate adaptive optics system are modelled and the improvement on the Strehl ratio of aberrated images quantified for both simulated images and real data. The application of this technique in experimental microscopes is considered.
87

Fiabilisation des transmissions optiques satellite-sol / Reliability of satellite-to-ground optical communication

Canuet, Lucien 16 April 2018 (has links)
Les longueurs d’onde optiques sont une alternative aux liens radio-fréquences pour lestransmissions satellite-sol du futur. Elles sont envisagées pour les futurs systèmes de télémesuresatellitaires (liens optiques descendants en provenance de satellites LEO) ou de communication(liens optiques bi-directionnels avec des satellites GEO). A sa traversée de l’atmosphère l’ondeoptique peut être profondément affectée par la turbulence atmosphérique. Elle subit desvariations spatiales et temporelles d’amplitude et de phase. Les variations d’amplitudesse traduisent par des variations de la puissance lumineuse collectée (scintillations). Lesperturbations de la phase affectent la distribution spatiale de la puissance au foyer du systèmede détection, qui n’est alors plus limitée par la diffraction. Des pertes peuvent en découler lorsdu couplage du flux incident à un détecteur optronique ou à une fibre optique monomode.Ces pertes se traduisent par des atténuations du signal reçu et donc par la perte d’informations.Pour s’en abstraire, les études de faisabilité les plus récentes mettent en avant l’utilisation desystèmes d’optique adaptative et de techniques numériques adaptées (codage/entrelacement).Pour limiter la complexité et le coût des systèmes de liens optiques, la définition des techniquesde compensation des atténuations peut être menée conjointement. C’est l’objectif principalde cette thèse. Il s’agit d’investiguer les complémentarités des techniques de compensationphysiques (optique adaptative) et numériques (entrelacement, codes correcteurs) pour disposerdes éléments permettant de définir les systèmes de correction les mieux adaptés. / Optical wavelengths are an alternative to radio-frequency links for future satellite-to-groundtransmissions. They are envisioned in the framework of payload/telemetry data transfer (opticaldownlinks from LEO satellites) or communication (bi-directional optical links with GEOsatellites). However, as it propagates through the atmosphere, the optical wave can be deeplyaffected by atmospheric turbulence which induces randomspatial and temporal variations ofits amplitude and phase. Variations in amplitude translate into fluctuations of the collectedpower (scintillation). The phase distortions affect the spatial distribution of the power at thefocal plane of the telescope causing deleterious losses when the incident flux needs to becoupled to an optoelectronic detector or to a single-mode optical fiber. Such losses result indynamical attenuations of the received signal -called fading- and hence potentially to the lossof information. The most recent feasibility studies highlight the use of two types of fadingmitigation techniques: adaptive optics systems and digital techniques (coding and interleaving).To limit the complexity and cost of such systems, the optimization of these mitigationtechniques should be conducted jointly. The main objective of this thesis is therefore theinvestigation of the complementarity of physical (adaptive optics) and digital data reliabilitymechanisms (interleaving, correcting and erasure codes in a cross-layer approach).
88

Calibration of the island effect: Experimental validation of closed-loop focal plane wavefront control on Subaru/SCExAO

N’Diaye, M., Martinache, F., Jovanovic, N., Lozi, J., Guyon, O., Norris, B., Ceau, A., Mary, D. 13 February 2018 (has links)
Context. Island effect (IE) aberrations are induced by differential pistons, tips, and tilts between neighboring pupil segments on ground-based telescopes, which severely limit the observations of circumstellar environments on the recently deployed exoplanet imagers (e.g., VLT/SPHERE, Gemini/GPI, Subaru/SCExAO) during the best observing conditions. Caused by air temperature gradients at the level of the telescope spiders, these aberrations were recently diagnosed with success on VLT/SPHERE, but so far no complete calibration has been performed to overcome this issue. Aims. We propose closed-loop focal plane wavefront control based on the asymmetric Fourier pupil wavefront sensor (APF-WFS) to calibrate these aberrations and improve the image quality of exoplanet high-contrast instruments in the presence of the IE. Methods. Assuming the archetypal four-quadrant aperture geometry in 8 m class telescopes, we describe these aberrations as a sum of the independent modes of piston, tip, and tilt that are distributed in each quadrant of the telescope pupil. We calibrate these modes with the APF-WFS before introducing our wavefront control for closed-loop operation. We perform numerical simulations and then experimental tests on a real system using Subaru/SCExAO to validate our control loop in the laboratory and on-sky. Results. Closed-loop operation with the APF-WFS enables the compensation for the IE in simulations and in the laboratory for the small aberration regime. Based on a calibration in the near infrared, we observe an improvement of the image quality in the visible range on the SCExAO/VAMPIRES module with a relative increase in the image Strehl ratio of 37%. Conclusions. Our first IE calibration paves the way for maximizing the science operations of the current exoplanet imagers. Such an approach and its results prove also very promising in light of the Extremely Large Telescopes (ELTs) and the presence of similar artifacts with their complex aperture geometry.
89

Multimode entanglement assisted QKD through a free-space maritime channel

Gariano, John, Djordjevic, Ivan B. 05 October 2017 (has links)
When using quantum key distribution (QKD), one of the trade-offs for security is that the generation rate of a secret key is typically very low. Recent works have shown that using a weak coherent source allows for higher secret key generation rates compared to an entangled photon source, when a channel with low loss is considered. In most cases, the system that is being studied is over a fiber-optic communication channel. Here a theoretical QKD system using the BB92 protocol and entangled photons over a free-space maritime channel with multiple spatial modes is presented. The entangled photons are generated from a spontaneous parametric down conversion (SPDC) source of type II. To employ multiple spatial modes, the transmit apparatus will contain multiple SPDC sources, all driven by the pump lasers assumed to have the same intensity. The receive apparatuses will contain avalanche photo diodes (APD), modeled based on the NuCrypt CPDS-1000 detector, and located at the focal point of the receive aperture lens. The transmitter is assumed to be located at Alice and Bob will be located 30 km away, implying no channel crosstalk will be introduced in the measurements at Alices side due to turbulence. To help mitigate the effects of atmospheric turbulence, adaptive optics will be considered at the transmitter and the receiver. An eavesdropper, Eve, is located 15 km from Alice and has no control over the devices at Alice or Bob. Eve is performing the intercept resend attack and listening to the communication over the public channel. Additionally, it is assumed that Eve can correct any aberrations caused by the atmospheric turbulence to determine which source the photon was transmitted from. One, four and nine spatial modes are considered with and without applying adaptive optics and compared to one another.
90

The LBTI Fizeau imager – I. Fundamental gain in high-contrast imaging

Patru, F., Esposito, S., Puglisi, A., Riccardi, A., Pinna, E., Arcidiacono, C., Antichi, J., Mennesson, B., Defrère, D., Hinz, P. M., Hill, J. M. 12 1900 (has links)
We show by numerical simulations a fundamental gain in contrast when combining coherently monochromatic light from two adaptive optics (AO) telescopes instead of using a single stand-alone AO telescope, assuming efficient control and acquisition systems at high speed. A contrast gain map is defined as the normalized point spread functions (PSFs) ratio of a single Large Binocular Telescope (LBT) aperture over the dual Large Binocular Telescope Interferometer (LBTI) aperture in Fizeau mode. The global gain averaged across the AO-corrected field of view is improved by a factor of 2 in contrast in long exposures and by a factor of 10 in contrast in short exposures (i.e. in exposures, respectively, longer or shorter than the coherence time). The fringed speckle halo in short exposures contains not only high-angular resolution information, as stated by speckle imaging and speckle interferometry, but also high-contrast imaging information. A high-gain zone is further produced in the valleys of the PSF formed by the dark Airy rings and/or the dark fringes. Earth rotation allows us to exploit various areas in the contrast gain map. A huge-contrast gain in narrow zones can be achieved when both a dark fringe and a dark ring overlap on to an exoplanet. Compared to a single 8-m LBT aperture, the 23-m LBTI Fizeau imager can provide a gain in sensitivity (by a factor of 4), a gain in angular resolution (by a factor of 3) and, as well, a gain in raw contrast (by a factor of 2-1000 varying over the AO-corrected field of view).

Page generated in 0.0549 seconds