• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Debris disks and the search for life in the universe

Cataldi, Gianni January 2016 (has links)
Circumstellar debris disks are the extrasolar analogues of the asteroid belt and the Kuiper belt. These disks consist of comets and leftover planetesimals that continuously collide to produce copious amounts of circumstellar dust that can be observed as infrared excess or in resolved imaging. As an obvious outcome of the planet formation process, debris disks can help us constrain planet formation theories and learn about the history of our own solar system. Structures in the disks such as gaps or warps can hint at the presence of planets. Thus, the study of debris disks is an important branch of exoplanetary science. In this thesis, some aspects of debris disks are considered in detail. A handful of debris disks show observable amounts of gas besides the dust. One such case is the edge-on debris disk around the young A-type star β Pictoris, where the gas is thought to be of secondary origin, i.e. derived from the dust itself. By observing this gas, we can thus learn something about the dust, and therefore about the building blocks of planets. In paper I, spectrally resolved observations of C II emission with Herschel/HIFI are presented. The line profile is used to constrain the spatial distribution of carbon gas in the disk, which helps understanding the gas producing mechanism. In paper II, we analyse C II and O I emission detected with Herschel/PACS and find that the oxygen must be located in a relatively dense region, possibly similar to the CO clump seen by ALMA. An upcoming analysis of our ALMA C I observations will give us a clearer picture of the system. Another famous debris disk is found around the nearby, 440 Myr old A-star Fomalhaut. Its morphology is that of an eccentric debris belt with sharp edges, suggesting shaping by a planet. However, gas-dust interactions may result in a similar morphology without the need to invoke planets. We test this possibility in paper III by analysing non-detections of C II and O I emission by Herschel/PACS. We find that there is not enough gas present to efficiently sustain gas-dust interactions, implying that the morphology of the Fomalhaut belt is due to a yet unseen planet or alternatively stellar encounters. One of the biggest challenges in exoplanetary research is to answer the question whether there are inhabited worlds other than the Earth. With the number of known rocky exoplanets in the habitable zone increasing rapidly, we might actually be able to answer this question in the coming decades. Different approaches exist to detect the presence of life remotely, for example by studying exoplanetary atmospheres or by analysing light reflected off the surface of an exoplanet. In paper IV, we study whether biosignatures (for example, certain minerals or microorganisms) ejected into a circumstellar debris disk by an impact event could be detected. We consider an impact similar to the Chicxulub event and model the collisional evolution of the ejected debris. Dust from such an event can potentially be detected by current telescopes, but analysis of the debris composition has to wait for future, advanced instruments. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Submitted.</p>
2

Debris Disks in Open Stellar Clusters

Gorlova, Nadiya Igorivna January 2006 (has links)
Indirect searches for planets (such as radial velocity studies)show that their formation may be quite common. The planets are however too small and faint to be seen against the glare of their host stars; therefore, their direct detectionis limited to the nearest systems. Alternatively one can study planets by studying their &quot;by-product&quot; -- dust. We see raw material available for planets around young stars, anddebris dust around old stars betraying planet-induced activity. Dust has a larger surface area per unit mass compared with a large body; it can be spread over a largersolid angle, intercepting more starlight and emitting much more lightvia reprocessing. By studying dusty disks we can infer the presence of planets at larger distances.Here we present results of a survey conducted with the SpitzerSpace Telescope of debrisdisks in three open clusters. With ages of 30--100 Myrs, these clusters are old enough that the primordialdust should have accreted into planetesimals, fallen onto the star, or been blown away due to a numberof physical processes. The dust we observe must come from collisions or sublimation of larger bodies.The purpose of this study is to investigate the dustevolution in the terrestrial planet zone, analogous to the Zodiacal cloud in our Solar system. We are most sensitive to this zone becausethe peak of a 125 K black body radiation falls into the primary pass-band of our survey -- 24 micron. We investigate the fraction and amount of the infra-red excesses around intermediate- to solar-mass stars in open stellar clusterswith well defined ages. The results are analyzed in the context of disk studies at other wavelengths and ages, providing an understanding of the time-scale for diskdissipation and ultimately planet building and frequency.
3

Growth of Planetesimals and the Formation of Debris Disks

Shannon, Andrew 31 August 2012 (has links)
At the edge of the Solar System lies the Kuiper Belt, a ring of leftover planetesimals from the era of planet formation. Collisions between the Kuiper Belt Objects produce dust grains, which absorb and re-radiate stellar radiation. The total amount of stellar radiation so absorbed is perhaps one part in ten million. Analogous to this, Sun-like stars at Sun-like ages commonly have dusty debris disks, which absorb and re-radiate as much as one part in ten thousand of the stellar radiation. We set out to understand this difference. In chapter 1, we outline the relevant observations and give a feel for the relevant physics. In chapter 2, we turn to the extrasolar debris disks. Using disks spanning a wide range of ages, we construct a pseudo-evolution sequence for extrasolar debris disks. We apply a straightforward collision model to this sequence, and find that the brightest disks are a hundred to a thousand times as massive as the Kuiper Belt, which causes the difference in dust luminosity. Current theoretical models of planetesimal growth predict very low efficiency in making large planetesimals, such that the Kuiper Belt should be the typical outcome of Minimum Mass Solar Nebula type disks. These models cannot produce the massive disks we find around other stars. We revisit these models in chapter 3, to understand the origin of this low efficiency. We confirm that these models, which begin with kilometer sized planetesimals, cannot produce the observed extrasolar debris disks. Instead, we propose an alternate model where most mass begins in centimeter sized grains, with some kilometer sized seed planetesimals. In this model, collisional cooling amongst the centimeter grains produces a new growth mode. We show in chapter 4 that this can produce the Kuiper Belt from a belt not much more massive than the Kuiper Belt today. We follow in chapter 5 by showing that this model can also produce the massive planetesimal populations needed to produce extrasolar debris disks.
4

Growth of Planetesimals and the Formation of Debris Disks

Shannon, Andrew 31 August 2012 (has links)
At the edge of the Solar System lies the Kuiper Belt, a ring of leftover planetesimals from the era of planet formation. Collisions between the Kuiper Belt Objects produce dust grains, which absorb and re-radiate stellar radiation. The total amount of stellar radiation so absorbed is perhaps one part in ten million. Analogous to this, Sun-like stars at Sun-like ages commonly have dusty debris disks, which absorb and re-radiate as much as one part in ten thousand of the stellar radiation. We set out to understand this difference. In chapter 1, we outline the relevant observations and give a feel for the relevant physics. In chapter 2, we turn to the extrasolar debris disks. Using disks spanning a wide range of ages, we construct a pseudo-evolution sequence for extrasolar debris disks. We apply a straightforward collision model to this sequence, and find that the brightest disks are a hundred to a thousand times as massive as the Kuiper Belt, which causes the difference in dust luminosity. Current theoretical models of planetesimal growth predict very low efficiency in making large planetesimals, such that the Kuiper Belt should be the typical outcome of Minimum Mass Solar Nebula type disks. These models cannot produce the massive disks we find around other stars. We revisit these models in chapter 3, to understand the origin of this low efficiency. We confirm that these models, which begin with kilometer sized planetesimals, cannot produce the observed extrasolar debris disks. Instead, we propose an alternate model where most mass begins in centimeter sized grains, with some kilometer sized seed planetesimals. In this model, collisional cooling amongst the centimeter grains produces a new growth mode. We show in chapter 4 that this can produce the Kuiper Belt from a belt not much more massive than the Kuiper Belt today. We follow in chapter 5 by showing that this model can also produce the massive planetesimal populations needed to produce extrasolar debris disks.
5

Observational Methods for the Study of Debris Disks: Gemini Planet Imager and Herschel Space Observatory

Draper, Zachary Harrison 03 December 2014 (has links)
There are many observational methods for studying debris disks because of constraints imposed on observing their predominately infrared wavelength emission close to the host star. Two methods which are discussed here are ground-based high contrast imaging and space-based far-IR emission. The Gemini Planet Imager (GPI) is a high contrast near-IR instrument designed to directly image planets and debris disks around other stars by suppressing star light to bring out faint sources nearby. Because debris disks are intrinsically polarized, polarimetry offers a useful way to enhance the scattered light from them while suppressing the diffracted, unpolarized noise. I discuss the characterization of GPI's microlens point spread function (PSF) in polarization mode to try to improve the quality of the processed data cubes. I also develop an improved flux extraction method which takes advantage of an empirically derived high-resolution PSF for both spectral and polarization modes. To address the instrumental effects of flexure, which affect data quality, I develop methods to counteract the effect by using the science images themselves without having to take additional calibrations. By reducing the number of calibrations, the Gemini Planet Imager Exoplanet Survey (GPIES) can stand to gain ~66 hours of additional on-sky time, which can lead to the discovery of more exoplanetary systems. The Herschel Space Observatory offers another method for observing debris disks which is ideally suited to measure the peak dust emission in the far-IR. Through a careful analysis, we look at 100/160 μm excess emission around λ Boo stars, to differentiate whether the emission is from a debris disk or a bowshock with the interstellar medium. It has been proposed that the stars' unusual surface abundances are due to external accretion of gas from those sources. We find that the 3/8 stars observed are well resolved debris disks and the remaining 5/8 were inconsistent with bowshocks. To provide a causal explanation of the phenomenon based on what we now know of their debris disks, I explore Poynting-Robertson (PR) drag as a mechanism for secondary accretion via a debris disk. However, I find that the accretion rates are too low to cause the surface abundance anomaly. Further study into the debris disks in relation to stellar abundances and surfaces are required to rule out or explain the λ Boo phenomenon through external accretion. / Graduate / 0606 / zhd@uvic.ca
6

Understanding the liveliness and volatility of debris disks: from the microscopic properties to causal mechanisms.

Draper, Zachary Harrison 30 August 2018 (has links)
Debris disks are a fundamental component of exoplanetary systems. Understanding their relationship with host stars and neighboring planets can help contextualize the evolution of exoplanetary systems. In order to further that goal, this thesis addresses some extreme outlier examples of debris disk systems. First, the highly asymmetric debris disk around HD 111520 is resolved and analyzed at multiple wavelengths to create a self-consistent model of the disk thermal emission and scattered light. The best-fit model is proposed to be an asymmetric disk from a recent collision of large, icy bodies on one side of the disk. In contrast, most debris disks are thought to be in a steady collisional cascade and this disk model could represent a relatively rare event in the creation of debris disks. Secondly, an optical spectroscopic survey of stars is conducted on stars where far-infrared observations exist to detect the presence of debris disks. Specifically, AF-type stars are targeted in order to provide context regarding the Lambda Boo phenomenon, where stars are found to be specifically refractory metal-poor. One mechanism for this was hypothesized to be from planetary scattering of debris disks, causing the accretion of volatiles from comets. The findings were that over the entire unbiased sample, stars which were refractory metal poor tended to be the stars with brightest debris disks. This supports a planet-disk hypothesis underlying the accretion of volatile gases, since debris disks undergoing active planetary stirring are brighter. This would mean about 13\% of stars with debris disk are undergoing strong planetary scattering based on the occurrence rate of Lambda Boo stars relative to debris disk stars. These two tacks in our observational understanding of these extreme examples of debris disks provide constraints on the volatility at work. / Graduate
7

The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

Morrison, Sarah Jane, Morrison, Sarah Jane January 2017 (has links)
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales $\sim$10 Myr to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
8

Observations and Models of Infrared Debris Disk Signatures and their Evolution

Gaspar, Andras January 2011 (has links)
In my thesis I investigate the occurrence of mid-infrared excess around stars and their evolution. Since the launch of the first infrared satellite, IRAS, we have known that a large fraction of stars exhibit significant levels of infrared emission above their predicted photospheric level. Resolved optical and infrared images have revealed the majority of these excesses to arise from circumstellar disk structures, made up of distributions of planetesimals, rocks, and dust. These structures are descriptively called debris disks. The first part of my thesis analyzes the Spitzer Space Telescope Observations of δ Velorum. The 24 μm Spitzer images revealed a bow shock structure in front of the star. My analysis showed that this is a result of the star’s high speed interaction with the surrounding interstellar medium. We place this observation and model in context of debris disk detections and the origin of λ Boötis stars. The second part of my thesis summarizes our observational results on the open cluster Praesepe. Using 24 μm data, I investigated the fraction of stars with mid-infrared excess, likely to have debris disks. I also assembled all results from previous debris disk studies and followed the evolution of the fraction of stars with debris disks. The majority of debris disks systems are evolved, few hundred million or a Gyr old. Since the dissipation timescale for the emitting dust particles is less than the age of these systems, they have to be constantly replenished through collisional grinding of the larger bodies. The last two chapters of my thesis is a theoretical analysis of the collisional cascade in debris disks, the process that produces the constant level of dust particles detected. I introduce a numerical model that takes into account all types of destructive collisions in the systems and solves the full scattering equation. I show results of comparisons between my and other published models and extensive verification tests of my model. I also analyze the evolution of the particle size distribution as a function of the variables in my model and show that the model itself is quite robust against most variations.
9

Enabling the direct detection of earth-sized exoplanets with the LBTI HOSTS project: a progress report

Danchi, W., Bailey, V., Bryden, G., Defrère, D., Ertel, S., Haniff, C., Hinz, P., Kennedy, G., Mennesson, B., Millan-Gabet, R., Rieke, G., Roberge, A., Serabyn, E., Skemer, A., Stapelfeldt, K., Weinberger, A., Wyatt, M., Vaz, A. 08 August 2016 (has links)
NASA has funded a project called the Hunt for Observable Signatures of Terrestrial Systems (HOSTS) to survey nearby solar type stars to determine the amount of warm zodiacal dust in their habitable zones. The goal is not only to determine the luminosity distribution function but also to know which individual stars have the least amount of zodiacal dust. It is important to have this information for future missions that directly image exoplanets as this dust is the main source of astrophysical noise for them. The HOSTS project utilizes the Large Binocular Telescope Interferometer (LBTI), which consists of two 8.4-m apertures separated by a 14.4-m baseline on Mt. Graham, Arizona. The LBTI operates in a nulling mode in the mid-infrared spectral window (8-13 mu m), in which light from the two telescopes is coherently combined with a 180 degree phase shift between them, producing a dark fringe at the location of the target star. In doing so the starlight is greatly reduced, increasing the contrast, analogous to a coronagraph operating at shorter wavelengths. The LBTI is a unique instrument, having only three warm reflections before the starlight reaches cold mirrors, giving it the best photometric sensitivity of any interferometer operating in the mid-infrared. It also has a superb Adaptive Optics (AO) system giving it Strehl ratios greater than 98% at 10 mu m. In 2014 into early 2015 LBTI was undergoing commissioning. The HOSTS project team passed its Operational Readiness Review (ORR) in April 2015. The team recently published papers on the target sample, modeling of the nulled disk images, and initial results such as the detection of warm dust around eta Corvi. Recently a paper was published on the data pipeline and on-sky performance. An additional paper is in preparation on beta Leo. We will discuss the scientific and programmatic context for the LBTI project, and we will report recent progress, new results, and plans for the science verification phase that started in February 2016, and for the survey.
10

Advancing spaceborne tools for the characterization of planetary ionospheres and circumstellar environments

Douglas, Ewan S. 04 December 2016 (has links)
This work explores remote sensing of planetary atmospheres and their circumstellar surroundings. The terrestrial ionosphere is a highly variable space plasma embedded in the thermosphere. Generated by solar radiation and predominantly composed of oxygen ions at high altitudes, the ionosphere is dynamically and chemically coupled to the neutral atmosphere. Variations in ionospheric plasma density impact radio astronomy and communications. Inverting observations of 83.4 nm photons resonantly scattered by singly ionized oxygen holds promise for remotely sensing the ionospheric plasma density. This hypothesis was tested by comparing 83.4 nm limb profiles recorded by the Remote Atmospheric and Ionospheric Detection System aboard the International Space Station to a forward model driven by coincident plasma densities measured independently via ground-based incoherent scatter radar. A comparison study of two separate radar overflights with different limb profile morphologies found agreement between the forward model and measured limb profiles. A new implementation of Chapman parameter retrieval via Markov chain Monte Carlo techniques quantifies the precision of the plasma densities inferred from 83.4 nm emission profiles. This first study demonstrates the utility of 83.4 nm emission for ionospheric remote sensing. Future visible and ultraviolet spectroscopy will characterize the composition of exoplanet atmospheres; therefore, the second study advances technologies for the direct imaging and spectroscopy of exoplanets. Such spectroscopy requires the development of new technologies to separate relatively dim exoplanet light from parent star light. High-contrast observations at short wavelengths require spaceborne telescopes to circumvent atmospheric aberrations. The Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) team designed a suborbital sounding rocket payload to demonstrate visible light high-contrast imaging with a visible nulling coronagraph. Laboratory operations of the PICTURE coronagraph achieved the high-contrast imaging sensitivity necessary to test for the predicted warm circumstellar belt around Epsilon Eridani. Interferometric wavefront measurements of calibration target Beta Orionis recorded during the second test flight in November 2015 demonstrate the first active wavefront sensing with a piezoelectric mirror stage and activation of a micromachine deformable mirror in space. These two studies advance our ``close-to-home'' knowledge of atmospheres and move exoplanetary studies closer to detailed measurements of atmospheres outside our solar system.

Page generated in 0.0646 seconds