Spelling suggestions: "subject:"added ariable lot"" "subject:"added ariable plot""
1 |
Mapeamento genético utilizando a teoria do gráfico da variável adicionada em modelos mistos / Genetic mapping using the theory of the Added Variable Plot in the mixed modelsDuarte, Nubia Esteban 11 May 2012 (has links)
Atualmente, um dos problemas mais importantes da Genética é a identificação de genes associados com doenças complexas. Um delineamento adequado para esta finalidade corresponde à coleta de dados de famílias e plataformas de marcadores moleculares do tipo SNP (do inglês, Single Nucleotide Polimorphism). Estas plataformas representam pontos de referência estrategicamente dispostos ao longo do genoma dos indivíduos e são de alta dimensão. A análise destes dados traz desafios analíticos como o problema de múltiplos testes e a seleção de variáveis preditoras. Nesta tese, propõe-se um critério para discriminar as variáveis preditoras genéticas em efeitos devidos ao componente aleatório poligênico e ao componente residual, sob a estrutura de um modelo linear misto. Também, considerando que o efeito individual das variáveis preditoras é esperado ser pequeno, é sugerido um método para encontrar subconjuntos ordenados destas variáveis e estudar o seu efeito simultâneo sobre a variável resposta em estudo. Neste contexto, utiliza-se a teoria associada ao Gráfico da Variável Adicionada em modelos mistos. As propostas são validadas por meio de um estudo de simulação, o qual é baseado em estruturas de famílias envolvidas no Projeto ``Corações de Baependi\" (InCor/USP), cujo objetivo é identificar genes associados a fatores de risco cardiovascular na população brasileira. Para a implementação dos procedimentos, usa-se o programa R e na geração das variáveis preditoras genéticas adota-se o aplicativo SimPed. / Recently, one of the most important problems in genetics is the identification of genes associated with complex diseases. A useful design for this proposal corresponds to collect data from extended families and molecular markers platforms SNPs (Single Nucleotide polymorphism). These platforms represent points of reference strategically placed along the genome of the individuals and are high dimensional. Analysis of these data brings analytical challenges as the problem of multiple testing and selection of predictive variables. In this thesis, we propose a criterion for discriminating predictors of genetic effects due to random polygenic component and the residual component, under the framework of a linear mixed model. Also, considering that the individual effects of predictor variables is expected to be small, it is suggested a method for finding ordered subsets of these variables and study their simultaneous effect on the response variable under study. In this context, is used the theory of the added variable plot under a mixed model framework. The proposals are validated through a simulation study, which is based on structures of families involved in the Project `` Baependi Heart Study (FAPESP Process 2007/58150-7), whose objective is to identify genes associated with cardiovascular risk factors in the Brazilian population. This proposal is implemented by using the R statistical environment and for the simulation of genetic predictors is adopted the SimPed application.
|
2 |
Mapeamento genético utilizando a teoria do gráfico da variável adicionada em modelos mistos / Genetic mapping using the theory of the Added Variable Plot in the mixed modelsNubia Esteban Duarte 11 May 2012 (has links)
Atualmente, um dos problemas mais importantes da Genética é a identificação de genes associados com doenças complexas. Um delineamento adequado para esta finalidade corresponde à coleta de dados de famílias e plataformas de marcadores moleculares do tipo SNP (do inglês, Single Nucleotide Polimorphism). Estas plataformas representam pontos de referência estrategicamente dispostos ao longo do genoma dos indivíduos e são de alta dimensão. A análise destes dados traz desafios analíticos como o problema de múltiplos testes e a seleção de variáveis preditoras. Nesta tese, propõe-se um critério para discriminar as variáveis preditoras genéticas em efeitos devidos ao componente aleatório poligênico e ao componente residual, sob a estrutura de um modelo linear misto. Também, considerando que o efeito individual das variáveis preditoras é esperado ser pequeno, é sugerido um método para encontrar subconjuntos ordenados destas variáveis e estudar o seu efeito simultâneo sobre a variável resposta em estudo. Neste contexto, utiliza-se a teoria associada ao Gráfico da Variável Adicionada em modelos mistos. As propostas são validadas por meio de um estudo de simulação, o qual é baseado em estruturas de famílias envolvidas no Projeto ``Corações de Baependi\" (InCor/USP), cujo objetivo é identificar genes associados a fatores de risco cardiovascular na população brasileira. Para a implementação dos procedimentos, usa-se o programa R e na geração das variáveis preditoras genéticas adota-se o aplicativo SimPed. / Recently, one of the most important problems in genetics is the identification of genes associated with complex diseases. A useful design for this proposal corresponds to collect data from extended families and molecular markers platforms SNPs (Single Nucleotide polymorphism). These platforms represent points of reference strategically placed along the genome of the individuals and are high dimensional. Analysis of these data brings analytical challenges as the problem of multiple testing and selection of predictive variables. In this thesis, we propose a criterion for discriminating predictors of genetic effects due to random polygenic component and the residual component, under the framework of a linear mixed model. Also, considering that the individual effects of predictor variables is expected to be small, it is suggested a method for finding ordered subsets of these variables and study their simultaneous effect on the response variable under study. In this context, is used the theory of the added variable plot under a mixed model framework. The proposals are validated through a simulation study, which is based on structures of families involved in the Project `` Baependi Heart Study (FAPESP Process 2007/58150-7), whose objective is to identify genes associated with cardiovascular risk factors in the Brazilian population. This proposal is implemented by using the R statistical environment and for the simulation of genetic predictors is adopted the SimPed application.
|
3 |
殘差圖在迴歸分析中之應用與分析鄭麗淑 Unknown Date (has links)
迴歸分析通常被用來描述兩個或兩個以上變數間的關係,或藉由一群自變數來預測某一應變數的相關資訊。然而,通常我們只知道自變數會對應變數造成影響,至於兩者間真正的函數型態為何,卻不得而知。因此,本文試圖介紹不同型式的殘差圖,諸如:簡單殘差圖(simple residual plot)、加變數解釋圖(added-variable plot)、部份殘差圖(partial residual plot或component-plus-residual plot)、增加部份殘差圖(augmented partial residual plot),藉由圖形所提供的資訊,希望能更有效率地找出適當的函數關係,將資料作轉換,使線性迴歸模式適用於轉換後的資料。 / The primary goal in a regression analysis is to understand how a response variable depends on one or more predictors, and to predict the value of response variable according to the predictors. However, most of the time, we only know that the predictors will have effect on the response variable, but not the true function of them. Therefore, some different forms of residual plot are considered in the study, including simple residual plot, added-variable plot, partial residual plot (or component-plus-residual plot), and augmented partial residual plot. In view of these residual plots, we can visualize easily the dependence of a response on predictors. Hence, after transforming the data using an appreciate function suggested by the plots, the data can be better fitted.
|
Page generated in 0.0661 seconds