Spelling suggestions: "subject:"modelo visto poligênica"" "subject:"modelo visto toxigênico""
1 |
Mapeamento genético utilizando a teoria do gráfico da variável adicionada em modelos mistos / Genetic mapping using the theory of the Added Variable Plot in the mixed modelsDuarte, Nubia Esteban 11 May 2012 (has links)
Atualmente, um dos problemas mais importantes da Genética é a identificação de genes associados com doenças complexas. Um delineamento adequado para esta finalidade corresponde à coleta de dados de famílias e plataformas de marcadores moleculares do tipo SNP (do inglês, Single Nucleotide Polimorphism). Estas plataformas representam pontos de referência estrategicamente dispostos ao longo do genoma dos indivíduos e são de alta dimensão. A análise destes dados traz desafios analíticos como o problema de múltiplos testes e a seleção de variáveis preditoras. Nesta tese, propõe-se um critério para discriminar as variáveis preditoras genéticas em efeitos devidos ao componente aleatório poligênico e ao componente residual, sob a estrutura de um modelo linear misto. Também, considerando que o efeito individual das variáveis preditoras é esperado ser pequeno, é sugerido um método para encontrar subconjuntos ordenados destas variáveis e estudar o seu efeito simultâneo sobre a variável resposta em estudo. Neste contexto, utiliza-se a teoria associada ao Gráfico da Variável Adicionada em modelos mistos. As propostas são validadas por meio de um estudo de simulação, o qual é baseado em estruturas de famílias envolvidas no Projeto ``Corações de Baependi\" (InCor/USP), cujo objetivo é identificar genes associados a fatores de risco cardiovascular na população brasileira. Para a implementação dos procedimentos, usa-se o programa R e na geração das variáveis preditoras genéticas adota-se o aplicativo SimPed. / Recently, one of the most important problems in genetics is the identification of genes associated with complex diseases. A useful design for this proposal corresponds to collect data from extended families and molecular markers platforms SNPs (Single Nucleotide polymorphism). These platforms represent points of reference strategically placed along the genome of the individuals and are high dimensional. Analysis of these data brings analytical challenges as the problem of multiple testing and selection of predictive variables. In this thesis, we propose a criterion for discriminating predictors of genetic effects due to random polygenic component and the residual component, under the framework of a linear mixed model. Also, considering that the individual effects of predictor variables is expected to be small, it is suggested a method for finding ordered subsets of these variables and study their simultaneous effect on the response variable under study. In this context, is used the theory of the added variable plot under a mixed model framework. The proposals are validated through a simulation study, which is based on structures of families involved in the Project `` Baependi Heart Study (FAPESP Process 2007/58150-7), whose objective is to identify genes associated with cardiovascular risk factors in the Brazilian population. This proposal is implemented by using the R statistical environment and for the simulation of genetic predictors is adopted the SimPed application.
|
2 |
Mapeamento genético utilizando a teoria do gráfico da variável adicionada em modelos mistos / Genetic mapping using the theory of the Added Variable Plot in the mixed modelsNubia Esteban Duarte 11 May 2012 (has links)
Atualmente, um dos problemas mais importantes da Genética é a identificação de genes associados com doenças complexas. Um delineamento adequado para esta finalidade corresponde à coleta de dados de famílias e plataformas de marcadores moleculares do tipo SNP (do inglês, Single Nucleotide Polimorphism). Estas plataformas representam pontos de referência estrategicamente dispostos ao longo do genoma dos indivíduos e são de alta dimensão. A análise destes dados traz desafios analíticos como o problema de múltiplos testes e a seleção de variáveis preditoras. Nesta tese, propõe-se um critério para discriminar as variáveis preditoras genéticas em efeitos devidos ao componente aleatório poligênico e ao componente residual, sob a estrutura de um modelo linear misto. Também, considerando que o efeito individual das variáveis preditoras é esperado ser pequeno, é sugerido um método para encontrar subconjuntos ordenados destas variáveis e estudar o seu efeito simultâneo sobre a variável resposta em estudo. Neste contexto, utiliza-se a teoria associada ao Gráfico da Variável Adicionada em modelos mistos. As propostas são validadas por meio de um estudo de simulação, o qual é baseado em estruturas de famílias envolvidas no Projeto ``Corações de Baependi\" (InCor/USP), cujo objetivo é identificar genes associados a fatores de risco cardiovascular na população brasileira. Para a implementação dos procedimentos, usa-se o programa R e na geração das variáveis preditoras genéticas adota-se o aplicativo SimPed. / Recently, one of the most important problems in genetics is the identification of genes associated with complex diseases. A useful design for this proposal corresponds to collect data from extended families and molecular markers platforms SNPs (Single Nucleotide polymorphism). These platforms represent points of reference strategically placed along the genome of the individuals and are high dimensional. Analysis of these data brings analytical challenges as the problem of multiple testing and selection of predictive variables. In this thesis, we propose a criterion for discriminating predictors of genetic effects due to random polygenic component and the residual component, under the framework of a linear mixed model. Also, considering that the individual effects of predictor variables is expected to be small, it is suggested a method for finding ordered subsets of these variables and study their simultaneous effect on the response variable under study. In this context, is used the theory of the added variable plot under a mixed model framework. The proposals are validated through a simulation study, which is based on structures of families involved in the Project `` Baependi Heart Study (FAPESP Process 2007/58150-7), whose objective is to identify genes associated with cardiovascular risk factors in the Brazilian population. This proposal is implemented by using the R statistical environment and for the simulation of genetic predictors is adopted the SimPed application.
|
3 |
Identification of causality in genetics and neuroscience / Identificação de causalidade em genética e neurociênciaRibeiro, Adèle Helena 28 November 2018 (has links)
Causal inference may help us to understand the underlying mechanisms and the risk factors of diseases. In Genetics, it is crucial to understand how the connectivity among variables is influenced by genetic and environmental factors. Family data have proven to be useful in elucidating genetic and environmental influences, however, few existing approaches are able of addressing structure learning of probabilistic graphical models (PGMs) and family data analysis jointly. We propose methodologies for learning, from observational Gaussian family data, the most likely PGM and its decomposition into genetic and environmental components. They were evaluated by a simulation study and applied to the Genetic Analysis Workshop 13 simulated data, which mimic the real Framingham Heart Study data, and to the metabolic syndrome phenotypes from the Baependi Heart Study. In neuroscience, one challenge consists in identifying interactions between functional brain networks (FBNs) - graphs. We propose a method to identify Granger causality among FBNs. We show the statistical power of the proposed method by simulations and its usefulness by two applications: the identification of Granger causality between the FBNs of two musicians playing a violin duo, and the identification of a differential connectivity from the right to the left brain hemispheres of autistic subjects. / Inferência causal pode nos ajudar a compreender melhor as relações de dependência direta entre variáveis e, assim, a identificar fatores de riscos de doenças. Em Genética, a análise de dados agrupados em famílias permite investigar influências genéticas e ambientais nas relações entre as variáveis. Neste trabalho, nós propomos métodos para aprender, a partir de dados Gaussianos agrupados em famílias, o mais provável modelo gráfico probabilístico (dirigido ou não dirigido) e também sua decomposição em dois componentes: genético e ambiental. Os métodos foram avaliados por simulações e aplicados tanto aos dados simulados do Genetic Analysis Workshop 13, que imitam características dos dados do Framingham Heart Study, como aos dados da síndrome metabólica do estudo Corações de Baependi. Em Neurociência, um desafio consiste em identificar interações entre redes funcionais cerebrais - grafos. Nós propomos um método que identifica causalidade de Granger entre grafos e, por meio de simulações, mostramos que o método tem alto poder estatístico. Além disso, mostramos sua utilidade por meio de duas aplicações: 1) identificação de causalidade de Granger entre as redes cerebrais de dois músicos enquanto tocam um dueto de violino e 2) identificação de conectividade diferencial do hemisfério cerebral direito para o esquerdo em indivíduos autistas.
|
Page generated in 0.0788 seconds