• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 646
  • 51
  • 45
  • 34
  • 28
  • 28
  • 22
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 1208
  • 1208
  • 499
  • 297
  • 284
  • 280
  • 264
  • 206
  • 143
  • 127
  • 112
  • 106
  • 105
  • 102
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

From Block Copolymers to Crosslinked Networks: Anionic Polymerization Affords Functional Macromolecules for Advanced Technologies

Schultz, Alison 26 July 2016 (has links)
Ion-containing macromolecules continue to stimulate new opportunities for emerging electro-active applications ranging from high performance energy devices to water purification membranes. Progress in polymer synthesis and engineering now permit well-defined, ion-containing macromolecules with tunable morphologies, mechanical performance, ion conductivity, and 3D structure in order to address these globally challenged technologies. Achieving tailored chemical compositions with high degrees of phase separation for optimizing conductivity and water adsorption remains a constant synthetic challenge and presents an exciting opportunity for engineering sophisticated macromolecular architectures. This dissertation will introduce unprecedented charged polymers using conventional free radical and anionic polymerization to incorporate ionic functionalities based on phosphonium cations. This new class of copolymers offers unique properties with ionic functionality for tailorable electro-active performance. / Ph. D.
172

Modeling the Thermal and Electrical Properties of Different Density Sintered Binder Jetted Copper for Verification and Revision of The Wiedemann-Franz Law

Meeder, Matthew Paul 21 September 2016 (has links)
There is a link between the thermal and electrical properties of metal. The equation which links these two properties is called the Wiedemann-Franz Law. Also there is an emerging technology within Additive Manufacturing called Binder Jet Printing which can print high purity copper without heat stress within the material. Due to the Binder Jet Printings ability to print high resolution prints without any print through, this makes future use of this technology a necessity for future electrical and thermal components within computers . However a thermal and electrical conductivity analysis of binder jetted copper has never been performed, and needs to be for simulation with this material. Therefore within this thesis the relationship of the thermal and electrical properties of printed binder jetted copper part will be researched. To find the electrical resistivity of binder jetted copper, three sets of 2mm diameter rods where printed and then placed within a modified four wire resistance method test. For the thermal conductivity measurements a laser flash diffusivity machine was used, and three sets of 11 copper disks of approximately 1cm diameter by 1mm where printed. The data shows a strong linear trend linking electrical resistivity to the density ratio of the copper. Within the thermal conductance measurement, a lot more variability was seen within the three different prints. The 70% density ratio prints saw a large 13% spread in density ratios throughout the prints, which is believed to be caused by improper sintering due to temperature gradients near the door of the kiln. The 82% density prints saw better grouping of density ratios by placing the specimens in the back of the kiln. Lastly, the 92% prints saw the best density ratio grouping but the largest thermal conductivity variance. Even though the scatter plot for the thermal conductivity measurements are not as precise as the electrical resistivity measurements, it still shows a linear trend which matches the NASA data from 1971. Overall, these linear trends can be modeled and compiled into a new form of the Wiedemann-Franz law, which accounts for the density ratio of the binder jetted print. / Master of Science
173

Hybridization of PolyJet and Direct Write for the Direct Manufacture of Functional Electronics in Additively Manufactured Components

Perez, Kevin Blake 20 January 2014 (has links)
The layer-by-layer nature of additive manufacturing (AM) allows for access to the entire build volume of a component during manufacture including the internal structure. Voids are accessible during the build process and allow for components to be embedded and sealed with subsequently printed layers. This process, in conjunction with direct write (DW) of conductive materials, enables the direct manufacture of parts featuring embedded electronics, including interconnects and sensors. The scope of previous works in which DW and AM processes are combined has been limited to single material AM processes. The PolyJet process is assessed for hybridization with DW because of its multi-material capabilities. The PolyJet process is capable of simultaneously depositing different materials, including rigid and elastomeric photopolymers, which enables the design of flexible features such as membranes and joints. In this work, extrusion-based DW is integrated with PolyJet AM technology to explore opportunities for embedding conductive materials on rigid and elastomeric polymer substrates. Experiments are conducted to broaden the understanding of how silver-loaded conductive inks behave on PolyJet material surfaces. Traces of DuPont 5021 conductive ink as small as 750?m wide and 28?m tall are deposited on VeroWhite+ and TangoBlack+ PolyJet material using a Nordson EFD high-precision fluid dispenser. Heated drying at 55°C is found to accelerate material drying with no significant effect on the conductor's geometry or conductivity. Contact angles of the conductive ink on PolyJet substrates are measured and exhibit a hydrophilic interaction, indicating good adhesion. Encapsulation is found to negatively impact conductivity of directly written conductors when compared to traces deposited on the surface. Strain sensing components are designed to demonstrate potential and future applications. / Master of Science
174

Integration of Physically-based and Data-driven Approaches for Thermal Field Prediction in Additive Manufacturing

Li, Jingran January 2017 (has links)
A quantitative understanding of thermal field evolution is vital for quality control in additive manufacturing (AM). Because of the unknown material parameters, high computational costs, and imperfect understanding of the underlying science, physically-based approaches alone are insufficient for component-scale thermal field prediction. Here, I present a new framework that integrates physically-based and data-driven approaches with quasi in situ thermal imaging to address this problem. The framework consists of (i) thermal modeling using 3D finite element analysis (FEA), (ii) surrogate modeling using functional Gaussian process, and (iii) Bayesian calibration using the thermal imaging data. Based on heat transfer laws, I first investigate the transient thermal behavior during AM using 3D FEA. A functional Gaussian process-based surrogate model is then constructed to reduce the computational costs from the high-fidelity, physically-based model. I finally employ a Bayesian calibration method, which incorporates the surrogate model and thermal measurements, to enable layer-to-layer thermal field prediction across the whole component. A case study on fused deposition modeling is conducted for components with 7 to 16 layers. The cross-validation results show that the proposed framework allows for accurate and fast thermal field prediction for components with different process settings and geometric designs. / Master of Science / This paper aims to achieve the layer to layer temperature monitoring and consequently predict the temperature distribution for any new freeform geometry. An engineering statistical synergistic model is proposed to integrate the pure statistical methods and finite element modeling (FEM), which is physically meaningful as well as accurate for temperature prediction. Besides, this proposed synergistic model contains geometry information, which can be applied to any freeform geometry. This paper serves to enable a holistic cyber physical systems-based approach for the additive manufacturing (AM) not only restricted in fused deposition modeling (FDM) process but also can be extended to powder-based process like laser engineered net shaping (LENS) and selective laser sintering (SLS). This paper as well as the scheduled future works will make it affordable for customized AM including customized geometries and materials, which will greatly accelerate the transition from rapid prototyping to rapid manufacturing. This article demonstrates a first evaluation of engineering statistical synergistic model in AM technology, which gives a perspective on future researches about online quality monitoring and control of AM based data fusion principles.
175

The Effects of Quantum Dot Nanoparticles on Polyjet Direct 3D Printing Process

Elliott, Amelia M. 18 March 2014 (has links)
Additive Manufacturing (AM) is a unique method of fabrication that, in contrast to traditional manufacturing methods, builds objects layer by layer. The ability of AM (when partnered with 3D scanning) to clone physical objects has raised concerns in the area of intellectual property (IP). To address this issue, the goal of this dissertation is to characterize and model a method to incorporate unique security features within AM builds. By adding optically detectable nanoparticles into transparent AM media, Physical Unclonable Function (PUFs) can be embedded into AM builds and serve as an anti-counterfeiting measure. The nanoparticle selected for this work is a Quantum Dot (QD), which absorbs UV light and emits light in the visible spectrum. This unique interaction with light makes the QDs ideal for a security system since the challenge (UV light) is a different signal from the response (the visible light emitted by the QDs). PolyJet, the AM process selected for this work, utilizes inkjet to deposit a photopolymer into layers, which are then cured with a UV light. An investigation into the visibility of the QDs within the printed PolyJet media revealed that the QDs produce PUF patterns visible via fluorescent microscopy. Furthermore, rheological data shows that the ink-jetting properties of the printing media are not significantly affected by QDs in sufficient concentrations to produce PUFs. The final objective of this study is to characterize the effects of the QDs on photocuring. The mathematical model to predict the critical exposure of the QD-doped photopolymer utilizes light scattering theory, QD characterization results, and photopolymer-curing characterization results. This mathematical representation will contribute toward the body of knowledge in the area of Additive Manufacturing of nanomaterials in photopolymers. Overall, this work embodies the first investigations of the effects of QDs on rheological characteristics of ink-jetted media, the effects of QDs on curing of AM photopolymer media, visibility of nanoparticles within printed AM media, and the first attempt to incorporate security features within AM builds. Finally, the major scientific contribution of this work is the theoretical model developed to predict the effects of QDs on the curing properties of AM photopolymers. / Ph. D.
176

Fabrication and Characterization of Carbon Nanocomposite Photopolymers via Projection Stereolithography

Campaigne, Earl Andrew III 19 August 2014 (has links)
Projection Stereolithography (PSL) is an Additive Manufacturing process that digitally patterns light to selectively expose and layer photopolymer into three dimensional objects. Nanomaterials within the photopolymer are therefore embedded inside fabricated objects. Adding varying concentrations of multi-walled carbon nanotubes (MWCNT) to the photopolymer may allow for the engineering of an objects tensile strength and electric conductivity. This research has two goals (i) the fabrication of three-dimensional structures using PSL and (ii) the material characterization of nanocomposite photopolymers. A morphological matrix design tool was developed and used to categorically analyze published PSL systems. These results were used to justifying design tradeoffs during the design and fabricate of a new PSL system. The developed system has 300μm resolution, 45mm x 25mm fabrication area, 0.23mW/cm2 intensity, and 76.2mm per hour vertical build rate. Nanocomposite materials were created by mixing Objet VeroClear FullCure 810 photopolymer with 0.1, 0.2, and 0.5 weight percent MWCNT using non-localized bath sonication. The curing properties of these nanocomposite mixtures were characterized; adding 0.1 weight-percent MWCNT increases the critical exposure by 10.7% and decreases the depth of penetration by 40.1%. The material strength of these nanocomposites were quantified through tensile testing; adding 0.1 weight-percent MWCNT decreases the tensile stress by 45.89%, the tensile strain by 33.33%, and the elastic modulus by 28.01%. Higher concentrations always had exaggerated effects. Electrical conductivity is only measurable for the 0.5 weight-percent nanocomposite with a 8k/mm resistance. The 0.1 weight-percent nanocomposite was used in the PSL system to fabricate a three-dimensional nanocomposite structure. / Master of Science
177

Creating Complex Hollow Metal Geometries Using Additive Manufacturing and Metal Plating

McCarthy, David Lee 23 July 2012 (has links)
Additive manufacturing introduces a new design paradigm that allows the fabrication of geometrically complex parts that cannot be produced by traditional manufacturing and assembly methods. Using a cellular heat exchanger as a motivational example, this thesis investigates the creation of a hybrid manufacturing approach that combines selective laser sintering with an electroforming process to produce complex, hollow, metal geometries. The developed process uses electroless nickel plating on laser sintered parts that then undergo a flash burnout procedure to remove the polymer, leaving a complex, hollow, metal part. The resulting geometries cannot be produced directly with other additive manufacturing systems. Copper electroplating and electroless nickel plating are investigated as metal coating methods. Several parametric parts are tested while developing a manufacturing process. Copper electroplating is determined to be too dependent on the geometry of the part, with large changes in plate thickness between the exterior and interior of the tested parts. Even in relatively basic cellular structures, electroplating does not plate the interior of the part. Two phases of electroless nickel plating combined with a flash burnout procedure produce the desired geometry. The tested part has a density of 3.16g/cm3 and withstands pressures up to 25MPa. The cellular part produced has a nickel plate thickness of 800µm and consists of 35% nickel and 65% air (empty space). Detailed procedures are included for the electroplating and electroless plating processes developed. / Master of Science
178

Characterization and Modeling of the Thermal Properties of Photopolymers for Material Jetting Processes

Mikkelson, Emily Cleary 25 March 2014 (has links)
One emerging application of additive manufacturing is building parts with embedded electronics, but the thermal management of these assemblies is a potential issue. Electrical components have efficiency losses, and a significant portion of that lost energy is converted into heat. Embedding electronics in PolyJet parts is of particular interest since material jetting additive manufacturing has the ability to deposit multiple, functionally graded materials on a pixel by pixel basis. Although there is existing literature on other PolyJet material properties, there is limited research on their thermal characterization. The goal of this work is to determine the thermal conductivities of select PolyJet photopolymers (VeroWhitePlus, TangoBlackPlus, and Grey60) by using the heat flow meter method. The resulting thermal conductivities are then applied in finite element analysis (FEA) simulations to model the thermal distribution of heated PolyJet parts. Two FEA models of one-dimensional conduction in PolyJet parts are defined and compared to a corresponding physical model to verify the thermal conductivity measurements; one simulation expresses thermal conductivity as a function of temperature and the other uses an average value of thermal conductivity. The thermal conductivities were determined for a range of temperatures, and the average values were 0.2376 W/(m•K), 0.2307 W/(m•K), and 0.2272 W/(m•K) for VeroWhitePlus, TangoBlackPlus, and Grey60, respectively. When applying the thermal conductivity results to an FEA model, it was concluded that defining thermal conductivity as a function of temperature (as opposed to a constant value), reduced the average error in the predicted temperatures by less than 1%. / Master of Science
179

Design and Additive Manufacturing of Carbon-Fiber Reinforced Polymer Microlattice with High Stiffness and High Damping

Kadam, Ruthvik Dinesh 17 October 2019 (has links)
Carbon fiber reinforced polymer (CFRP) composites are known for their high stiffness-to-weight and high strength-to-weight ratios and hence are of great interest in several engineering fields such as aerospace, automotive and defense. However, despite their light weight, high stiffness and high strength, their application in these fields is limited due to their poor energy dissipation and vibration damping capabilities. This thesis presents a two-phase microlattice design to overcome this problem. To realize this design, a novel tape casting integrated multi-material stereolithography system is developed and mechanical properties of samples fabricated using this system are evaluated. The design incorporating a stiff phase (CFRP) and a high loss phase, exhibiting high stiffness as well as high damping, is studied via analytical and experimental approaches. To investigate its damping performance, mechanical properties at small-strain and large-strain regimes are measured through dynamic material analysis (DMA) and quasi-static cyclic compression tests respectively. It is seen that both intrinsic (small-strain) and structural (large-strain) damping in terms of a figure of merit (FOM), E1/3tanδ/ρ, can be enhanced by a small addition of a high loss phase in Reuss configuration. Moreover, it is seen that structural damping is improved at low relative densities due to the presence of elastic buckling during deformation. For design usefulness, tunability maps, displaying FOM in terms of design parameters, are developed by curve fitting of experimental measurements. The microlattice design is also evaluated quantitatively by comparing it with existing families of materials in a stiffness-loss map, which shows that the design is as stiff as commercial CFRP composites and as dissipative as elastomers. / Master of Science / Carbon fiber reinforced polymer (CFRP) composites are known for their lightweight, high stiffness and high strength and hence are of great interest in several engineering fields such as aerospace, automotive and defense. However, despite these advantages, their application in these fields is limited due to their poor energy dissipation and vibration damping capabilities. This thesis presents a novel cellular lattice design to overcome this problem. Recent growth in stereolithography (SLA) has enabled the fabrication of complex structures with high resolution. Using this capability of SLA additive manufacturing, a cellular design is developed to improve both the stiffness and damping performance of CFRP composites while reducing weight. Experiments are conducted to determine the stiffness and damping properties and small and large deformations. It is seen that the stiffness and damping properties can be increased through a two-material hybrid design, comprising of a high stiffness phase and a high damping phase, arranged in a specific pattern. The microlattice design is evaluated quantitatively by comparing it with the existing families of materials using an Ashby chart. The design shows a two order-of-magnitude increase in the stiffness-damping performance when compared to commercially available CFRP.
180

Optimizing Emerging Healthcare Innovations in 3D Printing, Nanomedicine, and Imageable Biomaterials

Reese, Laura Michelle 05 January 2015 (has links)
Emerging technologies in the healthcare industry encompass revolutionary devices or drugs that have the potential to change how healthcare will be practiced in the future. While there are several emerging healthcare technologies in the pipeline, a few key innovations are slated to be implemented clinically sooner based on their mass appeal and potential for healthcare breakthroughs. This thesis will focus on specific topics in the emerging technological fields of nanotechnology for photothermal cancer therapy, 3D printing for irreversible electroporation applications, and imageable biomaterials. While these general areas are receiving significant attention, we highlight the potential opportunities and limitations presented by our select efforts in these fields. First, in the realm of nanomedicine, we discuss the optimization and characterization of sodium thiosulfate facilitated gold nanoparticle synthesis. While many nanoparticles have been examined as agents for photothermal cancer therapy, we closely examine the structure and composition of these specific nanomaterials and discuss key findings that not only impact their future clinical use, but elucidate the importance of characterization prior to preclinical testing. Next, we examine the potential use of 3D printing to generate unprecedented multimodal medical devices for local pancreatic cancer therapy. This additive manufacturing technique offers exquisite design detail control, facilitating tools that would otherwise be difficult to fabricate by any other means. Lastly, in the field of imageable biomaterials, we demonstrate the development of composite catheters that can be visualized with near infrared imaging. This new biomaterial allows visualization with near infrared imaging, offering potentially new medical device opportunities that alleviate the use of ionizing radiation. This collective work emphasizes the need to thoroughly optimize and characterize emerging technologies prior to preclinical testing in order to facilitate rapid translation. / Master of Science

Page generated in 0.0886 seconds