• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MODELING FATIGUE BEHAVIOR OF 3D PRINTED TITANIUM ALLOYS

Sanket Mukund Kulkarni (19194619) 03 September 2024 (has links)
<p dir="ltr">Repeated loading and unloading cycles lead to the formation of strain in the material which causes initiation of the crack formation this phenomenon is called fatigue. Fatigue properties are critical for structures subject to cyclic load; hence fatigue analysis is used to predict the life of the material. Fatigue analysis plays an important role in optimizing the design of the 3D printed material and predicting the fatigue life of the 3D printed component.</p><p><br></p><p dir="ltr">The main objective of this thesis is to predict the fatigue behavior of different microstructures of Ti-64 titanium alloy by using the PRISMS-Fatigue open-source framework. To achieve this goal Ti-64 microstructure models were created using programming scripts, then the structures were exported to a finite element visualization software package, with all the required properties embedded in the pipeline. The PRISMS-Fatigue framework is used to conduct a fatigue analysis on 3D printed materials, using the Fatigue Indicator Parameters (FIP), which measure the driving force of fatigue crack formation in the microstructurally small crack growth.</p><p><br></p><p dir="ltr">Three different microstructures, i.e., cubic equiaxed, random equiaxed, and rolled equiaxed microstructures, are analyzed. The FIP results show that the cubic equiaxed grains have the best fatigue resistance due to their isotropic structural characteristics. Additionally, the grain size effect using 1 and 10 micrometers is investigated. The results show that the 1 micrometer grain size cubic equiaxed microstructure has a better fatigue resistance because as grains are small and they have a higher mechanical strength.</p>
2

ADDITIVE MANUFACTURING BASED DISSOLVABLE CHIP PACKAGING

Dhiya eddine Belkadi (19200505) 26 July 2024 (has links)
<p dir="ltr">Electronics have contributed to the advancement of healthcare, wellness, security, and mobility, resulting in a higher standard of living. However, these ever-accelerating advancements and widespread application come at the cost of a shortened product life cycle and increase in produced E-waste which poses a significant environmental challenge. Recycling E-waste is challenging due to the complexity of electronics and packaging, hindering component retrieval for reuse. While sustainable materials for electronics have been researched, sustainable integrated circuit (IC) packaging for conventional electronics remains unexplored. This study introduces a method involving dissolvable additively manufactured packaging materials to recover commercial-off-the-shelf (COTS) chips from used electronics, which would alleviate supply-chain stress, reduce the need for manufacturing similar chips, and minimize environmental impact. In this work, Polyvinyl alcohol (PVA) and Acrylonitrile butadiene styrene (ABS), are explored as potential dissolvable semiconductor packaging materials. Optimal dissolving conditions allow chip recovery in less than 11 minutes for PVA and 2 minutes for ABS. This approach offers a sustainable packaging method for commercial electronic chips that matches conventional packaging performance with the added functionality of recoverable and recyclable components, contributing to the gap in sustainability and recycling for conventional electronics.</p>

Page generated in 0.1166 seconds