• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Silencing mutant Huntingtin by RNA interference for the treatment of Huntington Disease

Wagner, Laura A. 11 1900 (has links)
Huntington Disease (HD) is a dominantly inherited neurological disease attributed to a CAG expansion within the HD gene. The HD mutation gives rise to a polyglutamine expansion in exon 1 of the protein huntingtin (Htt). Since the discovery of the HD mutation in 1993, various HD gene mouse models have been developed to contain either fragments or full-length copies of the mutant HD gene. The existence of these HD mouse models enables focused therapeutic testing to develop potential treatments for HD. RNA interference (RNAi) therapy is a targeted gene silencing approach whereby synthetic RNA constructs are shuttled into the cell by viral vectors and used by the cell’s endogenous RNAi machinery to silence a gene of interest. RNAi therapy holds promise for mutant huntingtin (muHtt) allele-specific silencing as a treatment for HD. The purpose of this thesis was to develop the tools for pre-clinical testing of RNAi-mediated gene silencing of human muHtt in the YAC128 mouse model of HD. First, AAV serotypes were compared for delivery to striatal neurons, the neurons most affected in HD. From this work AAV serotype 1 was selected as the most effective serotype for construct delivery. Second, synthetic RNAi constructs including short-hairpin RNA (shRNA) and microRNA-based constructs (miR-shRNAs) were compared for silencing of human muHtt expression in vivo. Here, miR-shRNAs were found to have increased gene silencing and improved tolerance in avoiding immune activation compared to shRNAs. Alternatively, the shRNAs induced dramatic immune activation and morbidity in some cases. Ultimately these findings will contribute to a pre-clinical trial in YAC128 mice investigating Htt RNAi-mediated gene silencing in the treatment of HD, which is also discussed in this thesis. This future work provides proof-of-principle for muHtt allele-specific silencing as a treatment of HD.
2

Silencing mutant Huntingtin by RNA interference for the treatment of Huntington Disease

Wagner, Laura A. 11 1900 (has links)
Huntington Disease (HD) is a dominantly inherited neurological disease attributed to a CAG expansion within the HD gene. The HD mutation gives rise to a polyglutamine expansion in exon 1 of the protein huntingtin (Htt). Since the discovery of the HD mutation in 1993, various HD gene mouse models have been developed to contain either fragments or full-length copies of the mutant HD gene. The existence of these HD mouse models enables focused therapeutic testing to develop potential treatments for HD. RNA interference (RNAi) therapy is a targeted gene silencing approach whereby synthetic RNA constructs are shuttled into the cell by viral vectors and used by the cell’s endogenous RNAi machinery to silence a gene of interest. RNAi therapy holds promise for mutant huntingtin (muHtt) allele-specific silencing as a treatment for HD. The purpose of this thesis was to develop the tools for pre-clinical testing of RNAi-mediated gene silencing of human muHtt in the YAC128 mouse model of HD. First, AAV serotypes were compared for delivery to striatal neurons, the neurons most affected in HD. From this work AAV serotype 1 was selected as the most effective serotype for construct delivery. Second, synthetic RNAi constructs including short-hairpin RNA (shRNA) and microRNA-based constructs (miR-shRNAs) were compared for silencing of human muHtt expression in vivo. Here, miR-shRNAs were found to have increased gene silencing and improved tolerance in avoiding immune activation compared to shRNAs. Alternatively, the shRNAs induced dramatic immune activation and morbidity in some cases. Ultimately these findings will contribute to a pre-clinical trial in YAC128 mice investigating Htt RNAi-mediated gene silencing in the treatment of HD, which is also discussed in this thesis. This future work provides proof-of-principle for muHtt allele-specific silencing as a treatment of HD.
3

Silencing mutant Huntingtin by RNA interference for the treatment of Huntington Disease

Wagner, Laura A. 11 1900 (has links)
Huntington Disease (HD) is a dominantly inherited neurological disease attributed to a CAG expansion within the HD gene. The HD mutation gives rise to a polyglutamine expansion in exon 1 of the protein huntingtin (Htt). Since the discovery of the HD mutation in 1993, various HD gene mouse models have been developed to contain either fragments or full-length copies of the mutant HD gene. The existence of these HD mouse models enables focused therapeutic testing to develop potential treatments for HD. RNA interference (RNAi) therapy is a targeted gene silencing approach whereby synthetic RNA constructs are shuttled into the cell by viral vectors and used by the cell’s endogenous RNAi machinery to silence a gene of interest. RNAi therapy holds promise for mutant huntingtin (muHtt) allele-specific silencing as a treatment for HD. The purpose of this thesis was to develop the tools for pre-clinical testing of RNAi-mediated gene silencing of human muHtt in the YAC128 mouse model of HD. First, AAV serotypes were compared for delivery to striatal neurons, the neurons most affected in HD. From this work AAV serotype 1 was selected as the most effective serotype for construct delivery. Second, synthetic RNAi constructs including short-hairpin RNA (shRNA) and microRNA-based constructs (miR-shRNAs) were compared for silencing of human muHtt expression in vivo. Here, miR-shRNAs were found to have increased gene silencing and improved tolerance in avoiding immune activation compared to shRNAs. Alternatively, the shRNAs induced dramatic immune activation and morbidity in some cases. Ultimately these findings will contribute to a pre-clinical trial in YAC128 mice investigating Htt RNAi-mediated gene silencing in the treatment of HD, which is also discussed in this thesis. This future work provides proof-of-principle for muHtt allele-specific silencing as a treatment of HD. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
4

Estudio de los efectos de la reducción de la expresión de Dyrk1A, mediante interferencia de RNA, sobre el fenotipo motor del model transgénico TgDyrk1A. Implantación de kis receptores glutamatérgicos de tipo NMDA

Ortiz Abalia, Jon 15 May 2008 (has links)
DYRK1A es uno de los principales genes candidatos que podrían explicar algunos de los defectos neurológicos asociados al fenotipo Síndrome de Down (SD); desde el retraso mental, rasgo común a todos los individuos con SD hasta los déficits motores, también muy frecuentes entre la población con SD. Con el fin de validar la implicación de DYRK1A en el fenotipo SD se ha desarrollado una estrategia de terapia génica basada en la reducción de la expresión del gen mediante interferencia del RNA, en el modelo transgénico TgDyrk1A, y se han evaluado los efectos en el fenotipo motor de estos animales. Además se ha estudiado la implicación de los receptores glutamatérgicos de tipo NMDA en las alteraciones motoras descritas en el modelo. Los resultados obtenidos en este trabajo ponen de manifiesto la validez de la estrategia desarrollada y apuntan a una desregulación de los receptores de NMDA como uno de los mecanismos moleculares subyacentes de las disfunción motora presente en el modelo TgDyrk1A. / The are growing evidences to consider DYRK1A as a candidate gene for some of the neurological alterations present in DS phenotype such as mental retardation which is a common feature in the syndrome, or motor deficits which show a high prevalence among DS individuals. With the aim to validate the contribution of Dyrk1A to DS phenothype, we have developped a gene therapy strategy based on RNA interference to reduce gene expression in the transgenic model TgDyrk1A, and we have evaluated the effects in the motor phenotype of these animals. Moreover, we have studied the implication of the NMDA glutamate receptor in the motor alterations present in the model. The results obtained validate the strategy developped and suggest the deregulation of the NMDA receptor as one of the main causes underlying motor dysfunction in TgDyrk1A mice.

Page generated in 0.0791 seconds