• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring The Role Of Purinergic Signaling In T Cell Activation

Bhate, Monali M 06 1900 (has links) (PDF)
Adenosine 5’ triphosphate (ATP) is a molecule central to life for its role as the cellular energy currency, and a purine nucleotide which serves as a building block of RNA. Thus, on the backdrop of an indispensible intracellular role of ATP, its identification as an extracellular signaling molecule in early 1970s came as a surprise. A novel doctrine, termed as ‘purinergic signaling’, was thus put forth. By definition, purinergic signaling consists of the signaling events triggered by binding of extracellular ATP- a purine nucleotide, and its breakdown products (viz., ADP, AMP, and adenosine) to their cognate receptors, which in turn are termed as ‘purinergic receptors’. Based on their ligand affinity, purinergic receptors are classified into two groups- P1 and P2 receptors. P2 receptors are further subclassified as P2X and P2Y receptors. Till date, four P1 receptors (viz. A1, A2a, A2b, and A3), seven P2X receptors (P2X1-7), and eight P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) have been cloned and characterized. Conceptually, the first step of purinergic signaling is the release of ATP from an intact cell on encountering a stimulant or a modulator. The main mechanisms of such cellular ATP release include vesicular exocytosis and the release through conductive channels. ATP thus released, binds to its cognate receptors (i.e. P2X receptors, and certain P2Y receptors) and triggers the ‘purinergic signaling’ pathway that modulates the cellular response. In addition to purinergic receptors, cells also express ATP degrading enzymes on their surface, which break ATP down into ADP, AMP, and adenosine. ADP and adenosine, in turn, bind to their cognate receptors (certain P2Y receptors, and P1 receptors respectively) and further contribute to shaping the cellular response to a given cue. Thus, purinergic signaling is a highly dynamic process with pleiotropic downstream effects. First demonstrated in the context of neurotransmission, the phenomenon of purinergic signaling is now widely recognized and has been shown to play a role in regulating functional responses of cells of diverse origins, immune cells being one of them. Purinergic signaling in lymphocytes- an important subset of immune cells- is a common thread for the present research exercise, wherein we have addressed two sets of questions, one of academic curiosity and the other of clinical interest. In the former and the major part, we have examined whether purinergic signaling plays a role in functional aspects of ‘gamma delta (γδ) T cells’, which represent a unique subset of lymphocytes. Whereas, the latter part elaborates on the already identified involvement of purinergic signaling in T cell stimulatory action of ‘hypertonic saline (HS)’, which is used to treat trauma patients. The thesis, thus, is divided into five parts- the ‘Introduction’, ‘Aims and Scope of the study’, ‘Chapter 1’, ‘Chapter 2’, and ‘Summary of the work’. Understanding the questions posed in the present context, strategy designed to answer them, and eventually the experimental results answering these questions invoke basic knowledge of purinergic signaling, which has been attempted to be conferred through the ‘Introduction’ section. The discovery of purinergic signaling, its central theme, and individual molecular players involved in this signaling pathway are highlighted here. From the viewpoint of the present research endeavor, salient findings from the current literatureabout the involvement of purinergic signaling in the functional activities of various subsets of immune cells- are reviewed towards the end of this section. The ‘Introduction’ is followed by definition of the objectives for the present exercise, which are enlisted under ‘Aims and scope of the study’. Here, a brief overview of the background data that led us towards these objectives precedes the actual list of questions which we have approached. Purinergic signaling has been shown to play a role in the activation of ‘conventional αβ T’ cells. So we asked whether a similar purinergic signaling pathway also operates in unconventional γδ T cells. Thus, ‘Chapter 1’ is dedicated to answering the first set of questions about the role of purinergic signaling in γδ T cell activation. The chapter starts off by introducing γδ T cells. The topics such as discovery of γδ T cells, ontology, development, diversity, and distribution of these cells, and most importantly- their antigenic specificity and response are reviewed herein. The details of the experimental procedures employed to answer the defined objectives follow this introduction. We have carried out our experiments on γδ T cells in human circulation. For in vitro stimulation, we have used anti-CD3 + anti-CD28-coated beads (beads) or isopentenyl pyrophosphate (IPP), a γδ T cell specific stimulant. We observed that, circulating human γδ T cells rapidly release ATP on stimulation with beads or IPP. Pannexin-1 and connexin hemichannels, as well as vesicular exocytosis contribute to the ATP release. Real time RT-PCR data revealed that γδ T cells predominantly express purinergic receptors A2a, P2X1, P2X4, P2X7, and P2Y11. Of these, the inhibition of P2X4 receptors downregulated cytokine expression by γδ T cells post- in vitro stimulation, and also inhibited cytotoxic activity of γδ T cells towards Daudi cells. Selective translocation of P2X4 receptors to the immunological synapse was seen to be the underlying mechanism for these effects. Collectively, these data suggested that autocrine/paracrine purinergic signaling through P2X4 receptors indeed plays an important role in the functional aspects of circulating human γδ T cells. The experimental results are compiled in ‘Chapter 1’; which concludes with the ‘Discussion’ on the mentioned findings, and possible in vivo applications. ‘Chapter 2’ deals with the role of purinergic signaling in HS resuscitation. In addition to restoring the hemodynamic parameters, fluid replacement with small volumes of concentrated NaCl solution (HS) has been reported to reverse the suppression of T cells commonly found in the trauma subjects. Through an in vitro study using Jurkat cells as a model for primary human T cells, it has been shown earlier that, on HS exposure T cells release ATP- which binds to P2X7 receptors and promotes calcium influx. HS treatment also elicits phosphorylation of p38; and put together, Ca2+ influx and phosphorylated p38 synergize with TCR-induced stimulation resulting in the enhancement of transcriptional upregulation of IL-2. However, the mechanism of release of ATP on HS treatment and the possible involvement of P2X1 and P2X4 receptors expressed by T cells had not been addressed in this study. These very questions thus formed the objectives of the second part of present work. Experiments aimed to answer these questions showed that on HS treatment, Jurkat cells release ATP through pannexin-1 hemichannels. The released ATP binds to purinergic receptors P2X1, P2X4, and P2X7. This in turn triggers the downstream signaling cascade leading to phosphorylation of p38 and upregulation of IL-2 transcription, hence augmenting the T cell function. An overview of HS resuscitation, experimental protocols and results, and the discussion on the pathophysiological relevance of these findings comprise ‘Chapter 2’. Hence, we have found the answers to the questions we began with. The results are listed in a point-wise manner under the ‘Summary of the work’. Taken together, our data shows that: (i) Purinergic signaling does play a role in the functional aspects of circulating human γδ T cells. The release of ATP by γδ T cells post-stimulation, and autocrine/paracrine signaling through P2X4 receptors are the main components in this context. (ii) ATP release through pannexin-1 hemichannels, and autocrine/paracrine signaling through P2X1, P2X4, and P2X7 receptors underlie the mechanism of action of HS.
2

Evaluation of method for function control of test assay’s complementing and signaling enzymes

Strand, Alva January 2022 (has links)
Nucleoside 5'-Diphosphate Kinase (NdPK EC 2.7.4.6) is an enzyme (phosphotransferase) with extraordinary characteristics due to its unique ability to transfer phosphor groups to interconvert all nucleoside di- and triphosphates as a part of the DNA synthesis. Due to Biovica International AB's use of signaling and complementing enzymes in their in vitro diagnostic (IVD) test assays for Thymidine Kinase activity, an investigation was proposed to evaluate NdPK, which is a complementing enzyme in the assay. The aim of the study was to evaluate the enzymatic turnover of the enzyme NdPK with a spectrophotometric assay to obtain the specific activity (Units/mg solid protein). To determine the specific activity, enzyme kinetic methodology was applied, including the Michaelis-Menten model. In this study, the method is proposed as a general internal control procedure for the company, as a tool for function control of the different purchased enzymes used in their products in development. Results from the study reflects the different methods used to gain the specific activity for NdPK, where they were compared with the already specified specific activity from the manufacturing company. The results were auspicious, but before the method's authorization as an internal quality procedure, a few amendments are in mind. For instance, determining a method for the graphical readings, validating the method for quality control, and investigating if the method is applicable to other complementing enzymes. In conclusion, the method for determining the specific activity of the enzyme NdPK can be done, by executing the procedure of colorimetric enzyme assay.
3

Participação do sistema purinérgico no locus coeruleus (LC) no controle cardiorrespiratório e térmico em normocapnia e hipercapnia em ratos não anestesiados

Biancardi, Vivian 14 December 2011 (has links)
Made available in DSpace on 2016-06-02T19:22:55Z (GMT). No. of bitstreams: 1 4102.pdf: 1499777 bytes, checksum: 83d49633865ad84ab741b0091f168280 (MD5) Previous issue date: 2011-12-14 / Universidade Federal de Minas Gerais / Locus coeruleus (LC) is considered as a chemosensitive region to CO2/pH in mammals and amphibians, mainly its noradrenergic neurons. The LC purinergic neuromodulation is of particular interest since adenosine 5′-triphosphate (ATP) acts as a neuromodulator in many brainstem areas involved in cardiovascular and respiratory regulation, which includes Locus coeruleus (LC). ATP acting on LC P2 receptors influences the release of noradrenaline (NE) and the LC noradrenergic neurons are involved in the CO2-drive to breathing. Thus, the goal of the present study was to investigate the role of purinergic neuromodulation in the LC in the ventilatory, thermal and cardiovascular responses during normocapnia and hypercapnia in Wistar male unanesthetized rats. We assessed the purinergic modulation of cardiorespiratory and thermal responses by microinjecting ATP P2X receptor agonist (α,β-MeATP, 0.5 nmoL/40 nL and 1 nmoL/40 nL) and P2 receptor non selective antagonists (PPADS 0.5 nmoL/40 nL and 1 nmoL/40 nL; suramin, 1 nmoL/40 nL) into the LC. Pulmonary ventilation (VE, plethysmography), mean arterial pressure (MAP), heart rate (HR) and body core temperature (Tb, dataloggers) were measured before and after unilateral microinjection (40 nL) of α,β-MeATP, PPADS, suramin or 0.9% saline (vehicle) into the LC during 60 min normocapnia or 30 min period of 7% CO2 exposure followed by 30 min of normocapnia. Under normocapnic conditions, α,β-MeATP did not affect any parameter, whereas PPADS decreased respiratory frequency (f), increased MAP and HR and suramin increased Tb, MAP and HR and did not change ventilation. Hypercapnia induced an increase in ventilation, a fall in HR and did not change Tb in all groups. During hypercapnia, α,β-MeATP produced a further increase in ventilation and did not cause changes in cardiovascular and thermal parameters, PPADS caused an increase in MAP, did not alter ventilation and Tb and suramin elicited increases in ventilation, MAP and bradycardia and did not change Tb. Thus, our data suggest that purinergic neuromodulation in the LC plays an important role in the cardiorespiratory control during hypercapnia and modulates cardiorrespiratory and thermal control during normocapnic conditions in unanesthetized animals. / O LC é considerado uma região quimiossensível a CO2/pH em mamíferos e anfíbios, especificamente os neurônios noradrenérgicos. A neuromodulação purinérgica no LC desperta um interesse particular uma vez que a adenosina 5 -trifosfato (ATP) atua como neuromodulador em várias áreas do tronco encefálico envolvidas na regulação cardiorrespiratória, incluindo o LC e sua atuação em receptores P2 influencia a liberação de noradrenalina (NE) dos neurônios do LC. Portanto, o objetivo do presente estudo foi investigar a participação da neuromodulação purinérgica no LC nas respostas ventilatória, térmica e cardiovascular durante normocapnia e hipercapnia em ratos Wistar não anestesiados. A possível modulação do ATP nessas respostas foi realizada por meio da microinjeção do agonista de receptor P2X (α,β-MeATP, 0.5 nmol/40 nL e 1 nmol/40 nL) e dos antagonistas não seletivos de receptor P2 (PPADS 0.5 nmol/40 nL e 1 nmol/40 nL; suramin, 1nmol/40nL) no LC. Foram feitas medidas de ventilação pulmonar ( VE, pletismografia), temperatura corporal (TC) pressão arterial média (PAM) e frequência cardíaca (FC) antes da microinjeção unilateral de α,β--MeATP, PPADS, suramin ou salina (veículo, 40nL) no LC em condições basais, e após microinjeção durante 60 min de normocapnia ou 30 min de exposição a 7% CO2, seguido de 30 min de normocapnia. Em condições normocápnicas, a microinjeção de α,β-MeATP não afetou nenhuma das variáveis analisadas, enquanto que o PPADS promoveu uma redução da freqüência respiratória (fR), aumento da PAM e FC, e o suramin aumentou a TC, PAM e FC sem causar alterações na ventilação. A hipercapnia promoveu aumento da ventilação, uma redução na FC e não alterou a TC em todos os grupos. Durante hipercapnia, α,β-MeATP promoveu aumento da hiperpnéia sem causar alterações nas variáveis cardiovasculares e na temperatura, PPADS promoveu aumento da PAM sem alterar as variáveis respiratórias e a temperatura corporal e o suramin promoveu aumento da hiperventilação, aumento na PAM e bradicardia sem alterar a temperatura corporal. Portanto, nossos dados sugerem que a neuromodulação purinérgica no LC participa do controle cardiorrespiratório durante normocapnia e hipercapnia e modula a termorregulação em condições normocápnicas em animais não anestesiados.

Page generated in 0.1398 seconds