• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Involvement of adenosine A₁ receptors in systemic inflammation and altered vascular reactivity in allegric mice

Ponnoth, Dovenia S. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains xviii, 121 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 99-108).
2

Modulation of an acidosis-evoked current by A1 adenosine receptors in the CA1 region of the mouse Hippocampus

Galanis, Victor Chris. January 2005 (has links) (PDF)
Thesis (M.S.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Not embargoed. Vita. Bibliography: 29-32.
3

The role of adenosine and its receptor subtypes in nociception and neuropathic pain /

Wu, Weiping, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
4

Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

Kleynhans, Janke January 2013 (has links)
Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-motor symptoms, of which cognitive dysfunction is an example, also frequently occur. Current therapy provides symptomatic relief mainly by augmentation of dopaminergic signalling (levodopa, dopamine agonists, MAO and COMT enzyme inhibitors), but disease progression is not adequately addressed. New therapies that can prevent further neurodegeneration in addition to providing symptomatic relief are therefore urgently required. Adenosine has an important function as neuromodulator in the central nervous system. The adenosine A2A receptor in particular plays an essential role in the regulation of movement. This, coupled to the fact that it is uniquely distributed in the basal ganglia, contributes to its attractiveness as non-dopaminergic target in the treatment of movement disorders, such as Parkinson’s disease. The efficacy of adenosine receptor antagonists has been illustrated in animal models of Parkinson’s disease and several adenosine receptor antagonists have also reached clinical trials. The neuroprotective properties of adenosine A2A receptor antagonists are further attributed to their ability to modulate neuro-inflammation and decrease the release of the excitatory neurotransmitter glutamate, which is implicated in neurotoxicity. While adenosine A1 receptor antagonism has a synergistic effect on the motor effects of adenosine A2A receptor antagonism, it has the additional benefit of improving cognitive dysfunction, a cardinal non-motor symptom of Parkinson’s disease. Dual antagonism of adenosine A1 and A2A receptors therefore offers the potential of providing symptomatic relief as well as the neuroprotection so desperately needed in the clinical environment. Amino substituted heterocyclic scaffolds, such as those containing the 2-aminopyrimidine motif, have been shown to exhibit good efficacy as dual adenosine receptor antagonists. Since the structure activity relationships of 2-aminopyrimidines have not been comprehensively explored, it is in this regard that this study aimed to make a contribution. Results - Fourteen 2-aminopyrimidines were synthesised successfully over three steps, (although in low yields) and characterised by nuclear magnetic resonance and infrared spectroscopy, mass spectrometry, by determination of melting points and high performance liquid chromatography. Structure modifications explored included variation of the aromatic substituent on position 4, as well as variations in the substituents of the phenyl ring, present on position 6 of the pyrimidine ring. Radioligand binding assays were performed to determine the affinities of the synthesised compounds for the adenosine A1 and A2A receptor subtypes. Several high dual affinity derivatives were identified during this study; the compound with the highest affinity was 4-(5- methylthiophen-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (39f) with Ki values of 0.5 nM and 2.3 nM for the adenosine A2A and adenosine A1 receptors, respectively. A few general structure activity relationships were derived, which included: The effect of the aromatic substituent (position 4) on A2A affinity could be summarised (in order of declining affinity) as follows: 5-methylthiophene > phenyl > furan > pyridine > p-fluorophenyl > benzofuran. On the other hand, the effect of this substituent on A1 receptor affinity could be summarised (in order of declining affinity) as follows: phenyl > 5-methylthiophene > pfluorophenyl > benzofuran > pyridine. The affinities as exhibited by the methylthiophene derivatives 39f, 39h – 39j, further showed that while piperidine substitution (39f) resulted in optimal A2A and A1 affinity, pyrrolidine substitution (39j) was less favourable. Substitution at the 4ʹ position of the phenyl ring, as well as thiazole substitution, generally resulted in poor adenosine A1 and A2A receptor affinity. However, 4-[2-amino-6-(5-methylfuran-2-yl)pyrimidin- 4-yl]-N-(1,3-benzothiazol-2-yl)benzamide (39l) surprisingly demonstrated good affinity and selectivity for the adenosine A1 receptor. The results obtained during radioligand binding assays were rationalised by QSAR and molecular modelling (Discovery Studio 3.1, Accelrys) studies. The inverse relationship seen between log Ki (as indicator of affinity) and polar surface area, illustrated the importance of this physico-chemical property in the design of 2-aminopyrimidine A2A antagonists. The results from the docking study further showed that the orientation adopted by derivatives in the binding cavity (and particular hydrogen bonding to Asn 253 and Glu 169) is of importance. Results from the MTT cell viability assay indicated that none of the high affinity derivatives had a significant effect on cell viability at 1 μM, a concentration much higher than their Ki values. However, incorporation of the furan, benzofuran and p-fluorophenyl groups as aromatic substituent and a pyrrolidine as amine substituent, presented liabilities. Lastly, the haloperidol induced catalepsy assay (in rats) was used to give a preliminary indication of adenosine receptor antagonism or agonism. Compound 39f failed to reverse catalepsy under standard conditions, but showed some reversal after an increased time period. Indications therefore exist that 39f is an adenosine receptor antagonist that suffers from bioavailability issues. Compound (39c), 4-phenyl-6-[3-(piperidine-1- carbonyl)phenyl]pyrimidin-2-amine which also demonstrated promising affinity in the radioligand binding assays however showed a statistically significant reduction in catalepsy, indicating adenosine A2A receptor antagonism, and in vivo efficacy. Highly potent, dual affinity aminopyrimidine derivatives with acceptable toxicity profiles were identified in this study, with compound 39c demonstrating in vivo activity. The aim of designing and synthesising a promising dual adenosine A1/A2A receptor antagonist is therefore realised, with compound 39c as the most favourable example. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014
5

Further Studies in Adenosinergic and Monoaminergic Mechanisms of Analgesia by Amitriptyline

Liu, Jean 12 July 2012 (has links)
In this thesis, rodent models of chronic pain were used to explore analgesic mechanisms that may potentially be engaged in spinal and peripheral compartments by systemically-administered amitriptyline, a tricyclic antidepressant. The first project (Chapter 2) identified the roles of spinal adenosine A1 and serotonin 5-HT7 receptors, as well as of peripheral adenosine A1 receptors, in the acute antinociceptive effects of amitriptyline in mice. The second project (Chapter 3) examined the potential utility of amitriptyline as a preventive analgesic against persistent post-surgical pain, and involved perioperative administration of amitriptyline after peripheral nerve injury in rats. Changes in post-injury behavioural outcomes, as well as spinal noradrenergic sprouting, were assessed. Overall, spinal serotonergic pathways linked to adenosine A1 receptors, as well as peripheral adenosine A1 receptors, appear to be important in antinociception by amitriptyline. Preventive analgesia by this drug does not appear to result from anatomical changes in spinal noradrenergic pathways.
6

Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

Kleynhans, Janke January 2013 (has links)
Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-motor symptoms, of which cognitive dysfunction is an example, also frequently occur. Current therapy provides symptomatic relief mainly by augmentation of dopaminergic signalling (levodopa, dopamine agonists, MAO and COMT enzyme inhibitors), but disease progression is not adequately addressed. New therapies that can prevent further neurodegeneration in addition to providing symptomatic relief are therefore urgently required. Adenosine has an important function as neuromodulator in the central nervous system. The adenosine A2A receptor in particular plays an essential role in the regulation of movement. This, coupled to the fact that it is uniquely distributed in the basal ganglia, contributes to its attractiveness as non-dopaminergic target in the treatment of movement disorders, such as Parkinson’s disease. The efficacy of adenosine receptor antagonists has been illustrated in animal models of Parkinson’s disease and several adenosine receptor antagonists have also reached clinical trials. The neuroprotective properties of adenosine A2A receptor antagonists are further attributed to their ability to modulate neuro-inflammation and decrease the release of the excitatory neurotransmitter glutamate, which is implicated in neurotoxicity. While adenosine A1 receptor antagonism has a synergistic effect on the motor effects of adenosine A2A receptor antagonism, it has the additional benefit of improving cognitive dysfunction, a cardinal non-motor symptom of Parkinson’s disease. Dual antagonism of adenosine A1 and A2A receptors therefore offers the potential of providing symptomatic relief as well as the neuroprotection so desperately needed in the clinical environment. Amino substituted heterocyclic scaffolds, such as those containing the 2-aminopyrimidine motif, have been shown to exhibit good efficacy as dual adenosine receptor antagonists. Since the structure activity relationships of 2-aminopyrimidines have not been comprehensively explored, it is in this regard that this study aimed to make a contribution. Results - Fourteen 2-aminopyrimidines were synthesised successfully over three steps, (although in low yields) and characterised by nuclear magnetic resonance and infrared spectroscopy, mass spectrometry, by determination of melting points and high performance liquid chromatography. Structure modifications explored included variation of the aromatic substituent on position 4, as well as variations in the substituents of the phenyl ring, present on position 6 of the pyrimidine ring. Radioligand binding assays were performed to determine the affinities of the synthesised compounds for the adenosine A1 and A2A receptor subtypes. Several high dual affinity derivatives were identified during this study; the compound with the highest affinity was 4-(5- methylthiophen-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (39f) with Ki values of 0.5 nM and 2.3 nM for the adenosine A2A and adenosine A1 receptors, respectively. A few general structure activity relationships were derived, which included: The effect of the aromatic substituent (position 4) on A2A affinity could be summarised (in order of declining affinity) as follows: 5-methylthiophene > phenyl > furan > pyridine > p-fluorophenyl > benzofuran. On the other hand, the effect of this substituent on A1 receptor affinity could be summarised (in order of declining affinity) as follows: phenyl > 5-methylthiophene > pfluorophenyl > benzofuran > pyridine. The affinities as exhibited by the methylthiophene derivatives 39f, 39h – 39j, further showed that while piperidine substitution (39f) resulted in optimal A2A and A1 affinity, pyrrolidine substitution (39j) was less favourable. Substitution at the 4ʹ position of the phenyl ring, as well as thiazole substitution, generally resulted in poor adenosine A1 and A2A receptor affinity. However, 4-[2-amino-6-(5-methylfuran-2-yl)pyrimidin- 4-yl]-N-(1,3-benzothiazol-2-yl)benzamide (39l) surprisingly demonstrated good affinity and selectivity for the adenosine A1 receptor. The results obtained during radioligand binding assays were rationalised by QSAR and molecular modelling (Discovery Studio 3.1, Accelrys) studies. The inverse relationship seen between log Ki (as indicator of affinity) and polar surface area, illustrated the importance of this physico-chemical property in the design of 2-aminopyrimidine A2A antagonists. The results from the docking study further showed that the orientation adopted by derivatives in the binding cavity (and particular hydrogen bonding to Asn 253 and Glu 169) is of importance. Results from the MTT cell viability assay indicated that none of the high affinity derivatives had a significant effect on cell viability at 1 μM, a concentration much higher than their Ki values. However, incorporation of the furan, benzofuran and p-fluorophenyl groups as aromatic substituent and a pyrrolidine as amine substituent, presented liabilities. Lastly, the haloperidol induced catalepsy assay (in rats) was used to give a preliminary indication of adenosine receptor antagonism or agonism. Compound 39f failed to reverse catalepsy under standard conditions, but showed some reversal after an increased time period. Indications therefore exist that 39f is an adenosine receptor antagonist that suffers from bioavailability issues. Compound (39c), 4-phenyl-6-[3-(piperidine-1- carbonyl)phenyl]pyrimidin-2-amine which also demonstrated promising affinity in the radioligand binding assays however showed a statistically significant reduction in catalepsy, indicating adenosine A2A receptor antagonism, and in vivo efficacy. Highly potent, dual affinity aminopyrimidine derivatives with acceptable toxicity profiles were identified in this study, with compound 39c demonstrating in vivo activity. The aim of designing and synthesising a promising dual adenosine A1/A2A receptor antagonist is therefore realised, with compound 39c as the most favourable example. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014
7

Engineering the angiotensin II type 1 receptor for structural studies

Thomas, Jennifer Ann January 2015 (has links)
G protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that perform transmembrane signal transduction. Due to their pivotal role in a wide range of essential physiological functions GPCRs represent a high proportion of all drug targets. High resolution X-ray structures of GPCRs are however underrepresented in the Protein Data Bank. This is due to their instability in detergent, low expression levels and the presence of misfolded receptors in many heterologous expression systems. The objective of this project was to engineer the angiotensin II type 1 receptor (AT1R), a human GPCR, to make it suitable for structural studies. It was determined that detergentsolubilised AT1R was thermostable with antagonist bound with an apparent Tm of ~45°C, which was sufficiently stable for purification without further thermostabilisation by rational mutagenesis. Two expression systems were then evaluated for large-scale production of AT1R, namely baculovirus-mediated expression in insect cells and mammalian expression in HEK293 cells. Radioligand binding assays showed that only the mammalian system produced sufficient quantities of active AT1R for structural studies. Expression in the mammalian system was further optimised to approximately 6 mg/L. An AT1R-GFP fusion was created to examine membrane localisation using confocal laser scanning microscopy, to assay expression levels, to select highly expressing monoclonal cell lines using fluorescence activated flow cytometry and to develop a fluorescence size-exclusion chromatographybased assay to examine the suitability of 12 different ligands for co-crystallization. AT1R was also engineered to facilitate crystallisation, including C-terminal truncations to remove predicted disordered regions and bacteriophage T4-lysozyme being added to the third intracellular loop to provide additional points of contact for crystallisation, which increased the apparent Tm by approximately 10°C. All modified versions of AT1R were assessed for expression, stability and monodispersity. Additionally a rapid western blotting based assay was developed for the detection of unfolded membrane proteins, which will have wide applicability in the field.
8

Vliv perinatální hypoxie na motorický vývoj laboratorního potkana a možnosti ovlivnění / The influence of perinatal hypoxia on motoric development on laboratory rat and means of therapy

Vachovcová, Sylva January 2014 (has links)
Severe perinatal hypoxia represents a substantial brain injury in human newborns. This Diploma thesis is focused on long-term motor outcome of laboratory rat after moderate perinatal hypoxia. We described some behavioral test for detection motor development and presented the influence of perinatal hypoxia on central nervous system. We also discussed an effect of agonists and antagonists of adenosine A1 receptor in brain. The aim of an experimental part was an evaluation of long-term motor behavior in rats affected by perinatal hypoxia. To cause perinatal hypoxia we put pregnant female rats to a hypoxic (10% O2) normobaric room in 11th day of their gestation. The pregnant female rats stayed in hypoxic room until they gave a birth and 6 more days after birth with their litters. For classification of motor development we used battery of tests of motor coordination. These tests correspond to the level of development of the rat. Then a group of rats with perinatal hypoxia was treated by a single administration of an agonist of adenosine A1 receptor 2-chloro-N(6)- cyclopentyladenosin (CCPA) in postnatal day 14. The animals affected by perinatal hypoxia show motor deficits in 3 from 4 selected behavioral tests. Otherwise, this motor behavior was no longer detected in young adults. The rats affected by...
9

Regulation of Contractility by Adenosine A<sub>1</sub> and A<sub>2A</sub> Receptors in the Murine Heart: Role of Protein Phosphatase 2A: A Dissertation

Tikh, Eugene I. 21 June 2006 (has links)
Adenosine is a nucleoside that plays an important role in the regulation of contractility in the heart. Adenosine receptors are G-protein coupled and those implicated in regulation of contractility are presumed to act via modulating the activity of adenylyl cyclase and cAMP content of cardiomyocytes. Adenosine A1 receptors (A1R) reduce the contractile response of the myocardium to β-adrenergic stimulation. This is known as anti adrenergic action. The A2A adenosine receptor (A2AR) has the opposite effect of increasing contractile responsiveness of the myocardium. The A2AR also appears to attenuate the effects of A1R. The effects of these receptors have been primarily studied in the rat heart and with the utilization of cardiomyocyte preparations. With the increasing use of receptor knockout murine models and murine models of various pathological states, it is of importance to comprehensively study the effects of adenosine receptors on regulation of contractility in the murine heart. The following studies examine the adenosinergic regulation of myocardial contractility in isolated murine hearts. In addition, adenosinergic control of contractility is examined in hearts isolated from A2AR knockout animals. Responses to adenosinergic stimulation in murine isolated hearts are found to be comparable to those observed in the rat, with A1R exhibiting an anti adrenergic action and A2AR conversely enhancing contractility. A significant part of the A2AR effect was found to occur via inhibition of the A1R antiadrenergic action. A part of the anti adrenergic action of A1R has previously been shown to be the result of protein phosphatase 2A activation and localization to membranes. Additional experiments in the present study examine the effect of adenosinergic signaling on PP2A in myocardial extracts from wild type and A2AR knockout hearts. A2AR activation was found to decrease the activity of PP2A and enhance localization of the active enzyme to the cytosol; away from its presumed sites of action. In the A2AR knockout the response to A1R activation was enhanced compared with the wild type and basal PP2A activity was reduced. It is concluded that A2AR modulation of PP2A activity may account for the attenuation of the A1R effect by A2AR observed in the contractile studies.
10

Affinity of dihydropyrimidone analogues for adenosine A1 and A2A receptors / Runako Masline Katsidzira

Katsidzira, Runako Masline January 2014 (has links)
Parkinson’s disease (PD) is a neurodegenerative disorder that is characterised by a reduction of dopamine concentration in the striatum due to degeneration of dopaminergic neurons in the substantia nigra. Currently, first line treatment of PD includes the use of dopamine precursors, dopamine agonists and inhibitors of enzymatic degradation of dopamine, in an effort to restore dopamine levels and/or its effects. However, all these therapeutic strategies are only symptomatic and unfortunately do not slow, stop or reverse the progression of PD. From the discovery of adenosine A2A receptor-dopamine D2 receptor heteromers and the antagonistic interaction between these receptors, the basis of a new therapeutic approach towards the treatment of PD emerged. Adenosine A2A receptor antagonists have been shown to decrease the motor symptoms associated with PD, and are also potentially neuroprotective. The possibility thus exists that the administration of an adenosine A2A antagonist may prevent further neurodegeneration. Furthermore, the antagonism of adenosine A1 receptors has the potential of treating cognitive deficits such as those associated with Alzheimer's disease and PD. Therefore, dual antagonism of adenosine A1 and A2A receptors would be of great benefit since this would potentially treat both the motor as well as the cognitive impairment associated with PD. The affinities (Ki-values between 0.6 mM and 38 mM) of a series of 1,4-dihydropyridine derivatives were previously illustrated for the adenosine A1, A2A and A3 receptor subtypes by Van Rhee and co-workers (1996). These results prompted this pilot study, which aimed to investigate the potential of the structurally related 3,4-dihydropyrimidin-2(1H)-ones (dihydropyrimidones) and 2-amino-1,4-dihydropyrimidines as adenosine A1 and A2A antagonists. In this pilot study, a series of 3,4-dihydropyrimidones and 2-amino-1,4-dihydropyrimidines were synthesised and evaluated as adenosine A1 and A2A antagonists. Since several adenosine A2A antagonists also exhibit MAO inhibitory activity, the MAO-inhibitory activity of selected derivatives was also assessed. A modified Biginelli one pot synthesis was used for the preparation of both series of compounds under solvent free conditions. A mixture of a β- diketone, aldehyde and urea/guanidine hydrochloride was heated for an appropriate time to afford the desired compounds in good yields. MAO-B inhibition studies comprised of a fluorometric assay where kynuramine was used as substrate. A radioligand binding protocol described in literature was employed to investigate the binding of the compounds to the adenosine A2A and A1 receptors. The displacement of N-[3H]ethyladenosin-5’-uronamide ([3H]NECA) from rat striatal membranes and 1,3-[3H]-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) from rat whole brain membranes, was used in the determination of A2A and A1 affinity, respectively. The results showed that both 3,4-dihydropyrimidones and 2-amino-1,4-dihydropyrimidines had weak adenosine A2A affinity, with the p-fluorophenyl substituted dihydropyrimidone derivative (1h) in series 1, exhibiting the highest affinity for the adenosine A2A receptor (28.7 μM), followed by the p-chlorophenyl dihydropyrimidine derivative (2c) in series 2 (38.59 μM). Both series showed more promising adenosine A1 receptor affinity in the low micromolar range. The p-bromophenyl substituted derivatives in both series showed the best affinity for the adenosine A1 receptor with Ki-values of 7.39 μM (1b) and 7.9 μM (2b). The pmethoxyphenyl dihydropyrimidone (1d) and p-methylpneyl dihydropyrimidine (2e) derivatives also exhibited reasonable affinity for the adenosine A1 receptor with Ki-values of 8.53 μM and 9.67 μM, respectively. Neither the 3,4-dihydropyrimidones nor the 2-amino-1,4- dihydropyrimidines showed MAO-B inhibitory activity. Comparison of the adenosine A2A affinity of the most potent derivative (1h, Ki = 28.7 μM) from this study with that of the previously synthesised dihydropyridine derivatives (Van Rhee et al., 1996, most potent compound had a Ki = 2.74 mM) reveals that an approximate 100- fold increase in binding affinity for A2A receptors occurred. However, KW6002, a known A2A antagonist, that has already reached clinical trials, has a Ki-value of 7.49 nM. The same trend was observed for adenosine A1 affinity, where the most potent compound (1b) of this study exhibited a Ki-value of 7.39 μM compared to 2.75 mM determined for the most potent dihydropyridine derivatives (Van Rhee et al., 1996). N6-cyclopentyladenosine (CPA), a known adenosine A1 agonist that was used as a reference compound, however had a Kivalue of 10.4 nM. The increase in both adenosine A1 and A2A affinity can most likely be ascribed to the increase in nitrogens in the heterocyclic ring (from a dihydropyridine to a dihydropyrimidine) since similar results were obtained by Gillespie and co-workers in 2009 for a series of pyridine and pyrimidine derivatives. In their case it was found that increasing the number of nitrogens in the heterocyclic ring (from one to two nitrogen atoms for the pyridine and pyrimidine derivatives respectively) increased affinity for the adenosine A2A and adenosine A1 receptor subtypes, while three nitrogen atoms in the ring (triazine derivatives) were associated with decreased affinity. It thus appears that two nitrogen atoms in the ring (pyrimidine) are required for optimum adenosine A1 and A2A receptor affinity. The poor adenosine A2A affinity exhibited by the compounds of this study can probably be attributed to the absence of an aromatic heterocyclic ring. The amino acid, Phe-168 plays a very important role in the binding site of the A2A receptor, where it forms aromatic - - stacking interactions with the heterocyclic aromatic ring systems of known agonists and antagonists. Since the dihydropyrimidine ring in both series of this pilot study was not aromatic, the formation of aromatic - -stacking interactions with Phe-168 is unlikely. In conclusion, the 3,4-dihydropyrimidone and 2-amino-1,4-dihydropyrimidine scaffolds can be used as a lead for the design of novel adenosine A1 and A2A antagonists, although further structural modifications are required before a clinically viable candidate will be available as potential treatment of PD. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014

Page generated in 0.036 seconds