Spelling suggestions: "subject:"adenoviruses"" "subject:"densoviruses""
21 |
A study of adenovirus mediated transfer of p53 and Rb in cervical cancer cell lines黃天貴, Huang, Tiangui. January 1999 (has links)
published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
|
22 |
Role of Kinesins in Cytoplasmic Exploration by AdenovirusZhou, Jie January 2017 (has links)
A number of viruses exhibit microtubule-based bidirectional transport following cell entry. This behavior raises three questions: First, what mediates their transport along microtubules? Second, how do viruses recruit the motor proteins? Finally, how do they go to the right place by bidirectional transport in a variety of cell types with different microtubule organizations? We studied these questions with Adenovirus 5 (Ad5), a virus with well characterized, dynein-mediated minus transport mechanism. One form of plus end directed motor, Kif5C, has been reported to disrupt Ad5 capsids at the Nuclear Pore Complexes(NPC), but the mechanisms and roles of microtubule plus end-directed Ad5 transport prior to this stage are largely unknown. Here we performed a RNAi screen of 38 microtuble plus end-directed kinesins, which implicated Kif5B (kinesin-1 family) in plus-end directed Ad5 transport, along with several other forms of kinesin. Kif5B knockdown caused an accumulation of Ad5 particles near the centrosomes in human pulmonary epithelial A549 cells. This effect was strongly enhanced by blocking Ad5 nuclear pore targeting with Leptomycin B and supports a role for Kif5B in Ad5 transport prior to NPC docking. Kif5B RNAi was rescued by expression of any of the three Kif5 orthologues. We also found that Ad5 directly interacts with kinesin-1 via the capsid subunit Penton Base in a PH-independent manner. Together with our earlier studies, these findings reveal that Ad5 has evolved distinct recruitment mechanisms for cytoplasmic dynein and at least one form of kinesin-1 during early infection.
Despite clear evidence for short-range linear microtubule-associated Ad5 transport, we found the overall behavior of most Ad5 particles to be stochastic at a larger time scale, by mean-square-displacement (MSD) analysis. We named this behavior "assisted diffusion''. In consistent with this mechanism, Ad5 was able to maintain a normal nuclear targeting after we displaced centrosomes away from the nucleus by inhibiting CDK1 in late G2 cells. We also directly observed Ad5 switching from microtubule based transport to nuclear targeting from a microtubule near the nucleus. Kif5B RNAi dramatically inhibited this novel microtubule-based random-walk/“assisted-diffusion” mechanism. By super resolution microscopy, we found a more local distribution of NPC attached Ad5 over the entire nuclear surface under conditions of Kif5B knock down. We propose that adenovirus uses independently-recruited kinesin and dynein to fully explore the cytoplasm to search for and dock at the nucleus, a mechanism of potential importance for physiological cargoes as well.
|
23 |
Involvement of p53 and Rad51 in adenovirus replicationRussell, Iain Alasdair, n/a January 2007 (has links)
As an Adenovirus infects a host cell a multitude of molecular interactions occur, some driven by the virus and some driven by the cell it is infecting. Many of these areas of Adenovirus biology have been intensely studied over the last half century, however, many questions remain unanswered. The aim of this study was to investigate, more closely, a long studied molecular interaction, namely the role of the tumour suppressor p53 in the Adenovirus life cycle, and also to investigate the related, but much less studied, interaction between Adenoviruses and the host cell DNA repair machinery.
Controversy surrounds the role of p53 in the Adenovirus life cycle, with current dogma favouring the view that p53 is inactivated, as it presumably presents an obstacle to a productive infection. In Chapter 3, a standardised infection protocol was developed to examine this area of Adenovirus biology more closely. This was followed with an array of cell viability and western blotting analyses that not only showed p53 was not an antagonist of the Adenovirus life cycle, but in some cases p53 acted as a protagonist. Isogenic cell lines were used to reinforce this point. Following this, data were provided that virus DNA replication was linked to the ability of an Adenovirus to kill cells. Furthermore, p53 was shown by immunofluorescence to be present in infected cells at a time that corresponded with virus DNA replication, albeit at low levels. By adding p53 back into cells, it was shown that the number of Adenovirus progeny could be stimulated to levels produced in genetically wild type TP53 cells. A selection of promoter/reporter assays and infection/transfection assays then showed how p53 might be aiding the virus life cycle. These data showed that low levels of p53 cooperated with the Adenovirus transactivator, E1A, to promote late gene expression, and this translated into a modest increase in virus late antigens in infected cells. Taken together these data show that, contrary to current dogma, p53 generally aids an Adenovirus infection and it may do this through promoting virus late gene expression.
Recent data have emerged suggesting Adenoviruses must disable the host DNA double-strand break machinery to achieve a productive infection. As this area of Adenovirus biology is in its infancy, and as p53 has recently been identified as an integral component of these DNA repair processes, the contributions of the host cell repair machinery to Adenovirus biology were examined in Chapters 4 and 5. In Chapter 4, western blotting showed that upon Adenovirus infection, a key component of the homologous recombination repair machinery, Rad51, was markedly up-regulated. This up-regulation occurred independently of other key repair proteins, and was found to be a generalised feature of an Adenovirus infection. Surprisingly, p53 did not appear to be involved in this up-regulation, and neither were several other nodal host regulatory proteins. The up-regulation was then linked to Adenovirus DNA replication using a temperature-sensitive mutant Adenovirus, ts125. In Chapter 5, functional analysis of this up-regulated protein showed that Rad51 colocalised with Adenovirus replication centres. This colocalisation coincided with a time when virus DNA replication was occurring. Furthermore, transient over-expression of Rad51 drastically increased the amount of virus progeny produced. This effect was reproduced in two very different cell types and with a selection of attenuated mutant viruses. Finally, several models were proposed that might account for this newfound effect of Rad51 on the Adenovirus life cycle.
The data presented in this thesis shows that Adenovirus not only interacts with key molecular machinery within the host cell, but also manipulates this machinery to its own end. These data add additional layers of complexity to current knowledge of the virus/host cell relationship, and thus reveal new avenues of research for future work.
|
24 |
Coxsackie and Adenovirus Receptor (CAR) expression is a potential limiting factor in adenoviral oncotheraphyWiles, Karen Anna, n/a January 2007 (has links)
Novel approaches to cancer treatment in the context of Gene Therapy have been gaining popularity as an alternative to conventional therapies which have proven to lack specificity, resulting in tumour cell resistance, tumour progression and mortality. As a consequence the use of adenoviruses has been widely developed not only as a replication deficient vector for gene therapy but also as a replication competent oncolytic agent designed to selectively target and kill tumour cells. Unfortunately their success in clinical application has been limited, and it has been suggested that a lack of the primary viral attachment receptor 'CAR' could be a barrier to infection by limiting access to target cells. If Ad/CAR binding is the rate limiting step for successful Ad therapy, it is essential to establish a CAR expression profile in normal and tumour tissue, and in tumour progression, to enable more effective targeted therapy. Furthermore, in the context of using adenovirus as an anticancer strategy by exploiting its replicative lysis, it is important to explore whether Ad success is affected by CAR expression and to identify factors downstream of CAR that may be influential in this process.
In the first experimental chapter, an in vivo immunohistochemical analysis of tissue array slides determined CAR expression in a range of normal and tumour tissue. CAR was differentially expressed dependent on cell of origin, with normal stem cells and basal cells displaying very high CAR, signifying its importance in early development and differentiation. Epithelial cells were also high in CAR but its expression was negligible in mesenchymal, lymphoid and neural cells. This trend was also reflected in most tumour tissue albeit with a general decrease in CAR compared to corresponding normal tissue of the same organ. An exception was the blastic tumours which displayed high CAR reflecting their embryonic state of derivation. CAR expression also decreased in high grade, poorly differentiated tumours of the prostate, stomach and breast compared to their well differentiated counterparts.
In the second experimental chapter, a more comprehensive study of breast cancer biopsy specimens was undertaken, to determine both the expression of CAR and the tumour suppressor gene p53 in relation to tumour grade. The rationale being that both loss of CAR expression and p53 mutation (resulting in loss of function), have been associated with tumour progression. It is possible that CAR and p53 interact directly or indirectly and may be modulated by each other. This study revealed a decrease in both CAR and hormone receptor expression and an increase in p53 'mutational' status with increasing tumour grade. These three factors when compared independently to tumour grade are statistically significant associations, implying that CAR expression and hormone responsiveness decrease with tumour progression and p53 function is compromised or lost via mutation. There was also a significant association between CAR expression and hormone receptor status, however a significant association between CAR expression and p53 status within the tumour grades was not found.
Treatment outcome with Ads will also depend on defining factors downstream of CAR attachment that affect adenovirus 'permissivity', which is ultimately measured by viral replication and cell death, relying on the bystander effect to eradicate all tumour cells. The in vitro analysis revealed statistically significant associations between CAR receptor expression, 'infectivity' (virus infection) and permissivity. Cell lines that were more susceptible to Ad5 were generally of epithelial origin, had high CAR, and were easily infected. However there were exceptions and CAR was not the sole determinant in adenovirus cell entry nor in its ability to replicate and kill the cell. Permissivity was also related to p53 status. Thus, although CAR expression may indeed be a limiting factor, it is apparent that a combination of other events contributes to a deficient infection, especially in the deregulated tumour environment.
The results presented in this thesis clearly demonstrate that there is more to the story of 'CAR' which hints that its role in viro-oncotherapy is not limited solely to its function as an attachment receptor for adenovirus but may also involve its function as a cell adhesion molecule and signal transducer. The further elucidation of these aspects of CAR�s potential role in the scheme of tumour biology may alter the course and strategy of cancer therapy in the future.
|
25 |
Characterization of adenovirus isolated from sheep in OregonBabar, Shakeel 08 September 1995 (has links)
Six 3 to 4 weeks old, cesarian-derived lambs were inoculated with ovine an
adenovirus isolate 475N. Inoculated lambs showed moderate clinical signs of respiratory
distress, conjunctivitis, and loose feces during the 10-day observation period. Virus was
detected from nasal and conjunctival swabs starting on postinoculation day (PID) 2.
Virus was detected in the feces in a inconsistent fashion. At necropsy, virus was present
in the lung, tonsils, and bronchial and mediastinal lymph nodes of lambs necropsied on
PID 5 and 7. Tissue samples from gastrointestinal tract and kidney were negative for
the virus. Presence of virus in the feces was believed to be from replication in tonsillar
tissue. At necropsy, lambs showed signs of pneumonia and numerous intranuclear
inclusion bodies were detected in affected lung tissue. Virus neutralizing antibodies
appeared at low levels in serum on PID 6 and reached higher levels by PID 10.
Six ovine adenovirus prototype species, three uncharacterized ovine and bovine
adenoviruses isolates and two uncharacterized llama adenoviruses isolates were digested
with four different restriction enzymes. Digested viral DNA was separated in 0.7%
agarose gels. The enzymes Barn HI, Eco RI, Hind III, and Pst I digested viral DNA and
produced 2-10 bands. The profile of the band distribution permitted the differentiation
of the viruses under study. However, further studies using multiple isolates of each
species are required to determine if this procedure will efficiently distinguish different
species of ruminant adenoviruses.
Ten adenoviruses from sheep (including the six prototype species), one from
bovine and one from llama were studied by virus neutralization test to determine their
degree of antigenic similarities. Reciprocal virus neutralization tests were performed and
the degree of antigenic similarities, i.e., strain differentiation was determined by criteria
established by the International Committee for the Nomenclature of Viruses. Isolates
32CN (a bovine adenovirus) and 475N (an ovine adenovirus) were antigenically identical
and not neutralized by any of the prototype species antiserum. They are candidates for
a new species of ruminant adenoviruses. Ovine adenovirus isolate 47F was shown to be
a member of OAV-5 species while the llama adenovirus strain represents a newly
recognized species for this animal. / Graduation date: 1996
|
26 |
Development of an enzyme-linked immunosorbent assay for the serologic diagnosis of bovine adenovirus type 3Whipple, Margaret Jo 26 November 1991 (has links)
An enzyme-linked immunosorbent assay was developed to
measure specific antibody response in bovine sera to bovine
adenovirus type 3 (BA3), an etiologic agent of respiratory
disease causing economic losses annualy to the cattle
industry. Observed endpoint titers were determined using
the intersection point from optical density values of
serially diluted sera with a positive-negative threshold.
Regression equations were determined from standards with
titers ranging from low to high and used to predict ELISA
titers from a single-serum dilution. A near-linear
relationship existed between the observed and predicted
ELISA titers of 118 bovine sera (r=0.9261). Predicted ELISA
titers were determined using the single-dilution method for
another 76 bovine sera and the correlation between the ELISA
titers and serum-virus neutralization titers for these sera
indicated a strong linear trend (r=0.8172).
Both the ELISA and serum-virus neutralization titers on
the bovine sera tested indicated widespread exposure to
several types of bovine adenovirus. Although detection of
active infection would still require examination of sera
over time for evidence of a rising titer, the single-dilution
ELISA devised should provide a rapid and sensitive
method for detection of antibody response to bovine
adenovirus type 3. / Graduation date: 1992
|
27 |
Development of helper-dependent adenovirus for gene expression in muscleDeol, Jatinderpal. January 2001 (has links)
Duchenne muscular dystrophy (DMD) is characterized by necrosis and progressive loss of muscle fibers. DMD patients have a mutation in the gene encoding dystrophin, a large membrane-associated cytoskeletal protein on the cytoplasmic side of the sarcolemma. Gene therapy using fully deleted adenoviral vectors shows great potential for the eventual treatment of DMD and other genetic diseases. These vectors are less immunogenic than their predecessors and have the capacity to carry large DNA inserts such as the full-length dystrophin (12 kb). However, the lack of viral genes results in a weakened and subsiding (short) transgene expression in muscle. Findings in the lung and liver have shown the adenoviral E4 region, in particular E4 open reading frame 3 (ORF3) to contribute to the maintenance of transgene expression. We constructed an adenovirus in which E4 ORF3 was reintroduced into a fully-deleted adenovirus along with full-length dystrophin (AdCBDysORF3). Dystrophin levels produced by AdCBDysORF3 were found to be not sustained in mdx mice, dropping significantly by day 90. However, expression levels did increase when AdCBDysORF3 was complemented with other viral proteins such as EIB. Likewise, increasing the expression of the primary adenovirus receptor (CAR) in muscle also resulted in a higher initial dystrophin expression in myofibers.
|
28 |
Coxsackie and Adenovirus Receptor (CAR) expression is a potential limiting factor in adenoviral oncotheraphyWiles, Karen Anna, n/a January 2007 (has links)
Novel approaches to cancer treatment in the context of Gene Therapy have been gaining popularity as an alternative to conventional therapies which have proven to lack specificity, resulting in tumour cell resistance, tumour progression and mortality. As a consequence the use of adenoviruses has been widely developed not only as a replication deficient vector for gene therapy but also as a replication competent oncolytic agent designed to selectively target and kill tumour cells. Unfortunately their success in clinical application has been limited, and it has been suggested that a lack of the primary viral attachment receptor 'CAR' could be a barrier to infection by limiting access to target cells. If Ad/CAR binding is the rate limiting step for successful Ad therapy, it is essential to establish a CAR expression profile in normal and tumour tissue, and in tumour progression, to enable more effective targeted therapy. Furthermore, in the context of using adenovirus as an anticancer strategy by exploiting its replicative lysis, it is important to explore whether Ad success is affected by CAR expression and to identify factors downstream of CAR that may be influential in this process.
In the first experimental chapter, an in vivo immunohistochemical analysis of tissue array slides determined CAR expression in a range of normal and tumour tissue. CAR was differentially expressed dependent on cell of origin, with normal stem cells and basal cells displaying very high CAR, signifying its importance in early development and differentiation. Epithelial cells were also high in CAR but its expression was negligible in mesenchymal, lymphoid and neural cells. This trend was also reflected in most tumour tissue albeit with a general decrease in CAR compared to corresponding normal tissue of the same organ. An exception was the blastic tumours which displayed high CAR reflecting their embryonic state of derivation. CAR expression also decreased in high grade, poorly differentiated tumours of the prostate, stomach and breast compared to their well differentiated counterparts.
In the second experimental chapter, a more comprehensive study of breast cancer biopsy specimens was undertaken, to determine both the expression of CAR and the tumour suppressor gene p53 in relation to tumour grade. The rationale being that both loss of CAR expression and p53 mutation (resulting in loss of function), have been associated with tumour progression. It is possible that CAR and p53 interact directly or indirectly and may be modulated by each other. This study revealed a decrease in both CAR and hormone receptor expression and an increase in p53 'mutational' status with increasing tumour grade. These three factors when compared independently to tumour grade are statistically significant associations, implying that CAR expression and hormone responsiveness decrease with tumour progression and p53 function is compromised or lost via mutation. There was also a significant association between CAR expression and hormone receptor status, however a significant association between CAR expression and p53 status within the tumour grades was not found.
Treatment outcome with Ads will also depend on defining factors downstream of CAR attachment that affect adenovirus 'permissivity', which is ultimately measured by viral replication and cell death, relying on the bystander effect to eradicate all tumour cells. The in vitro analysis revealed statistically significant associations between CAR receptor expression, 'infectivity' (virus infection) and permissivity. Cell lines that were more susceptible to Ad5 were generally of epithelial origin, had high CAR, and were easily infected. However there were exceptions and CAR was not the sole determinant in adenovirus cell entry nor in its ability to replicate and kill the cell. Permissivity was also related to p53 status. Thus, although CAR expression may indeed be a limiting factor, it is apparent that a combination of other events contributes to a deficient infection, especially in the deregulated tumour environment.
The results presented in this thesis clearly demonstrate that there is more to the story of 'CAR' which hints that its role in viro-oncotherapy is not limited solely to its function as an attachment receptor for adenovirus but may also involve its function as a cell adhesion molecule and signal transducer. The further elucidation of these aspects of CAR�s potential role in the scheme of tumour biology may alter the course and strategy of cancer therapy in the future.
|
29 |
Characterisation of DNA damage inducible responses and repair in human cells using recombinant adenovirus vectors /Francis, Murray A. January 2000 (has links)
Thesis (Ph.D.) -- McMaster University, 2000. / Includes bibliographical references (leaves 244-294). Also available via World Wide Web.
|
30 |
Impact of respiratory viruses on mortalityChan, Yuk-on. January 2005 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2005. / Also available in print.
|
Page generated in 0.0519 seconds