• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Order FEMs Using Penalty Technigues for Poisson's Eigenvalue Problems with Periodical Boundary Conditions

Jian, Shr-jie 26 June 2006 (has links)
Adini¡¦s elements are applied to Poisson¡¦s eigenvalue problems in the unit square with periodical boundary conditions and the leading eigenvalues are obtained from the Rayleigh quotient. The penalty techniques are developed to copy with periodical boundary conditions, and superconvergence is also explored for leading eigenvalues. The optimal convergence O(h^6) are obtained for quasiuniform elements (see [2, 21]). When the uniform rectangular elements are used, the superconvergence O(h^6+p) with p = 1 or p = 2 of leading eigenvalues is proved, where h is the maximal boundary length of Adini¡¦s elements. Numerical experiments are carried to verify the analysis made. Keywords. Adini¡¦s elements, Poisson¡¦s equation, periodical boundary conditions, eigenvalue problems.
2

Global Superconvergence of Finite Element Methods for Elliptic Equations

Huang, Hung-Tsai 06 June 2003 (has links)
In the dissertation we discuss the rectangular elements, Adini's elements and $p-$order Lagrange elements, which were constructed in the rectangular finite spaces. The special rectangular partitions enable the finite element solutions $u_h$ more efficient in interpolation of the true solution for Elliptic equation $u_I$. The convergence rates of $|u_h-u_I|_1$ are one or two orders higher than the optimal convergence rates. For post-processings we construct higher order interpolation operation $Pi_p$ to reach superconvergence $|u-Pi_p u_h|_1$. To our best knowledge, we at the first time provided the a posteriori interpolant formulas of Adini's elements and biquadratic Lagrange elements to obtain the global superconvergence, and at the first time reported the numerical verification for supercloseness $O(h^4)-O(h^5) $, global superconvergence $O(h^5)$ in $H^1$-norm and the high rates $O(h^6|ln h|)$ in the infinity norm for Poisson's equation(i.e., $-Delta u = f$). Since the finite element methods is fail to deal with the singularity problems, in the dissertation, the combinations of the Ritz-Galerkin method and the finite element methods are used for the singularity problem, i.e., Motz's problem. To couple two methods along their common boundary, we adopt the simplified hybrid, penalty, and penalty plus hybrid techniques. The analysis are made in the dissertation to derive the almost best global superconvergence $O(h^{p+2-delta})$ in $H^1$-norm, $0<delta << 1$, for the combination using $p(geq 2)$-rectangles in the smooth subdomain, and the best global superconvergence $O(h^{3.5})$ in $H^1$-norm for combinations of Adini's elements in the smooth subdomain. The numerical experiments have been carried out for the combinations of the Ritz-Galerkin method and Adini's elements, to verify the theoretical superconvergence derived.

Page generated in 0.0531 seconds