• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrospun Scaffolds for Cartilage Tissue Engineering: Methods to Affect Anisotropy, Material and Cellular Infiltration

Garrigues, Ned William January 2011 (has links)
<p>The aim of this dissertation was to develop new techniques for producing electrospun scaffolds for use in the tissue engineering of articular cartilage. We developed a novel method of imparting mechanical anisotropy to electrospun scaffolds that allowed the production of a single, cohesive scaffold with varying directions of anisotropy in different layers by employing insulating masks to control the electric field. We improved the quantification of fiber alignment, discovering that surface fibers in isotropic scaffolds show similar amounts of fiber alignment as some types of anisotropic scaffolds, and that cells align themselves in response to this subtle fiber alignment. We improved previous methods to improve cellular infiltration into tissue engineering scaffolds. Finally, we produced a new material with chondrogenic potential consisting of native unpurified cartilage which was electrospun as a composite with a synthetic polymer. This work provided advances in three major areas of tissue engineering: scaffold properties, cell-scaffold interaction, and novel materials.</p> / Dissertation
2

Intervertebral Disc Regeneration Injection of a Cell-Loaded Collagen Hydrogel in a Sheep Model

Friedmann, Andrea, Baertel, Andre, Schmitt, Christine, Ludtka, Christopher, Milosevic, Javorina, Meisel, Hans-Joerg, Goehre, Felix, Schwan, Stefan 19 December 2023 (has links)
Degenerated intervertebral discs (IVDs) were treated with autologous adipose-derived stem cells (ASC) loaded into an injectable collagen scaffold in a sheep model to investigate the implant's therapeutic potential regarding the progression of degeneration of previously damaged discs. In this study, 18 merino sheep were subjected to a 3-step minimally invasive injury and treatment model, which consisted of surgically induced disc degeneration, treatment of IVDs with an ASC-loaded collagen hydrogel 6 weeks post-operatively, and assessment of the implant's influence on degenerative tissue changes after 6 and 12 months of grazing. Autologous ASCs were extracted from subcutaneous adipose tissue and cultivated in vitro. At the end of the experiment, disc heights were determined by µ-CT measurements and morphological tissue changes were histologically examined.Histological investigations show that, after treatment with the ASC-loaded collagen hydrogel implant, degeneration-specific features were observed less frequently. Quantitative studies of the degree of degeneration did not demonstrate a significant influence on potential tissue regeneration with treatment. Regarding disc height analysis, at both 6 and 12 months after treatment with the ASC-loaded collagen hydrogel implant a stabilization of the disc height can be seen. A complete restoration of the intervertebral disc heights however could not be achieved.The reported injection procedure describes in a preclinical model a translational therapeutic approach for degenerative disc diseases based on adipose-derived stem cells in a collagen hydrogel scaffold. Further investigations are planned with the use of a different injectable scaffold material using the same test model.
3

Microporteurs polymériques poreux à surface bioactive pour l’ingénierie de tissus osseux / Polymeric porous microcarriers with bioactive surface for bone tissue engineering

Kuterbekov, Mirasbek 06 May 2019 (has links)
La régénération des défauts osseux de taille critique reste un défi majeur pour la santé. Les limitations des greffes de tissus communes nous ont incités à développer une alternative synthétique basée sur la construction d’un biomatériau, des facteurs ostéoinductifs et des cellules souches. Pour la construction du biomatériau, nous nous sommes concentrés sur les microporteurs polymères poreux, car ils supportent une expansion cellulaire à grande échelle et un assemblage modulaire des tissus, contournant deux goulots d'étranglement importants pour la traduction clinique. Pour assurer l'approvisionnement industriel et l'approbation réglementaire, nous avons conçu une méthode de fabrication sans solvant organique basée sur la cristallisation sphérulitique du poly(L-lactide) (PLLA) dans ses mélanges avec du polyéthylène glycol (PEG). Les sphérulites de PLLA ont été facilement récupérées sous forme de microporteurs en éliminant par rinçage le PEG soluble dans l'eau. Leur taille et leur porosité pourraient être contrôlées indépendamment en ajustant le rapport PLLA / PEG et la température de cristallisation. La biocompatibilité et l'ostéoconductivité des microporteurs à PLLA ont été confirmées par l'expansion et la différenciation ostéogénique des cellules souches adipeuses humaines (hASC). Comme cette dernière fonction hASC est sensible à différents paramètres de culture, nous avons ensuite utilisé l'approche de conception d'expériences pour leur dépistage rapide. En combinaison avec l'analyse à haut débit, nous avons identifié plusieurs paramètres ayant une influence marquée sur leur différenciation ostéogénique. Enfin, pour la délivrance de facteurs ostéoinducteurs, nous avons élaboré des multicouches de polyélectrolytes (PEM) à base de poly (L-ornithine) et d'acide hyaluronique biocompatibles. Ces PEM ont été caractérisées en termes de croissance, de morphologie, d'aptitude à incorporer des protéines morphogénétiques osseuses (BMP) et à fonctionner en tant que revêtements sur des microporteurs à PLLA. Nos résultats préliminaires ont montré que l’incorporation de BMP dans les PEM avait un effet important sur l’adhérence des hASC. Bien que des études supplémentaires soient nécessaires, les microporteurs à PLLA recouverts de PEM chargés de BMP et ensemencés avec hASC pourraient être un implant synthétique prometteur pour une régénération osseuse améliorée. / The regeneration of critical-sized bone defects remains a major healthcare challenge. The limitations of common tissue grafts prompted us to develop a synthetic alternative based on a biomaterial construct, osteoinductive factors and stem cells. For biomaterial construct, we focused on porous polymeric microcarriers as they support large-scale cell expansion and modular tissue assembly, circumventing two important bottlenecks for clinical translation. To insure industrial supply and regulatory approval, we designed an organic-solvent-free method for their fabrication based on the spherulitic crystallization of poly(L-lactide) (PLLA) in its blends with polyethylene glycol (PEG). The PLLA spherulites were easily recovered as microcarriers by rinsing away the water-soluble PEG. Their size and porosity could be independently controlled by tuning the PLLA/PEG ratio and crystallization temperature. The biocompatibility and osteoconductivity of PLLA microcarriers were confirmed through the expansion and osteogenic differentiation of human adipose stem cells (hASCs). Because the latter hASC function is sensitive to different culture parameters, we then used the Design of Experiments approach for their rapid screening. In combination with high-throughput analysis, we identified several parameters that had a pronounced influence on their osteogenic differentiation. Finally, for the delivery of osteoinductive factors, we elaborated polyelectrolyte multilayers (PEM) based on biocompatible poly(L-ornithine) and hyaluronic acid. These PEMs were characterized in terms of their growth, morphology, the ability to incorporate bone morphogenetic proteins (BMP) and to function as coatings on PLLA microcarriers. Our preliminary results showed that the incorporation of BMPs inside PEMs had a strong effect on hASC adhesion. While further studies are needed, hASC-seeded PLLA microcarriers coated with BMP-loaded PEMs could be a promising synthetic implant for improved bone regeneration.
4

Adipose stromal cells enhance keratinocyte survival and migration in vitro, and graft revascularization in mouse wound healing model

Knowles, Kellen Alexander 11 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the US, more than 1 million burn injuries are reported annually. About 45,000 injuries due to fires and burns result in hospitalization and ten percent of these result in death every year. Advances in burn treatment have led to a reduction in mortality rate over the last decades. Since more patients are surviving the initial resuscitation phase even with very large areas of skin being burned away, wound care has become increasingly important to ensure continued patient survival and improvement. While currently a common treatment for third degree burn wounds, skin grafts have several drawbacks. The availability of donor sites for autografts may be limited, especially in incidences of extensive skin loss. The rejection associated with the use of allografts and xenografts may render them inadequate or undesirable. Even if a suitable graft is found, poor retention due to infection, hematoma, and low vascularity at the recipient site are other drawbacks associated with the use of skin grafts as a primary treatment for severe burn wounds. As such, research has been done into alternative treatments, which include but are not limited to artificial skin, cell therapy, and growth factor application. We propose the delivery of adipose derived stem cells (ASC) in combination with endothelial progenitor cells (EC) via Integra Dermal Regenerative Template (DRT) to promote faster graft vascularization and thus faster healing of wounds. Integra DRT is an acellular skin substitute that consists of a dermal layer composed of bovine collagen and chondroitin-6-sulfate glycosaminoglycan, and an "epidermal" layer, which consists of silicone polymer. This silicone layer is removed after the collagen matrix is adequately vascularized (usually takes 2-3 weeks), and then a thin layer autograft is applied to the top of the neo-dermis. ASC are derived from the stromal-vascular fraction (SVF) of adipose tissue and are a readily available, pluripotent, mesenchymal cell known to promote angiogenesis. They are being explored as a treatment for a myriad of diseases and conditions, including wound healing. In combination with ECs, they form stable microvessel networks in vitro and in vivo. In our work, we found that ASC+EC form stable microvessel networks when cultured on Integra DRT. Also, ASC and ASC+EC conditioned media promoted both survival and migration of human epidermal keratinocytes compared to control medium. In a full thickness wound healing model, using healthy NSG mice, the ASC+EC case showed a significantly higher rate of wound closure compared to control. Based on best linear unbiased estimates (BLUE), the difference between the healing rates of ASC alone treatment and the Control treatment group is -0.45 +/- 0.22 mm²/day (p=0.041), which is not less than 0.025 and thus not statistically significant (Bonferroni Adjusted). However, the BLUE for the difference between the ASC+EC group and the Control group healing rates is -0.55 +/- 0.28 mm²/day (p = 0.017<0.025, Bonferroni Adjusted), which is statistically significant. Histology revealed a significantly higher number of vessels compared to control in both ASC alone and ASC+EC case. CD31 staining revealed the presence of human vessels in ASC+EC treatment scaffolds. We conclude that the combination of ASC and EC can be used to accelerate healing of full-thickness wounds when delivered to site of the wound via Integra. This result is especially compelling due to the fact that the mice used were all healthy. Thus our treatment shows an improvement in healing rate even compared to normal wound healing.
5

Tsg-6 : an inducible mediator of paracrine anti-inflammatory and myeloprotective effects of adipose stem cells

Xie, Jie 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI). / Tumor necrosis factor-induced protein 6 (TSG-6) has been shown to mitigate inflammation. Its presence in the secretome of adipose stem / stromal cells (ASC) and its role in activities of ASC have been overlooked. This thesis described for the first time the release of TSG-6 from ASC, and its modulation by endothelial cells. It also revealed that protection of endothelial barrier function was a novel mechanism underlying the anti-inflammatory activity of both ASC and TSG-6. Moreover, TSG-6 was found to inhibit mitogen-activated lymphocyte proliferation, extending the understanding of its pleiotropic effects on major cell populations involved in inflammation. Next, enzyme-linked immunosorbent assays (ELISA) were established to quantify secretion of TSG-6 from human and murine ASC. To study the importance of TSG-6 to specific activities of ASC, TSG-6 was knocked down in human ASC by siRNA. Murine ASC from TSG-6-/- mice were isolated and the down-regulation of TSG-6 was verified by ELISA. The subsequent attempt to determine the efficacy of ASC in ameliorating ischemic limb necrosis and the role of TSG-6, however, was hampered by the highly variable ischemic tissue necrosis in the BALB/c mouse strain. Afterwards in a mouse model of cigarette smoking (CS), in which inflammation also plays an important role, it was observed, for the first time, that 3-day CS exposure caused an acute functional exhaustion and cell cycle arrest of hematopoietic progenitor cells; and that 7-week CS exposure led to marked depletion of phenotypic bone marrow stem and progenitor cells (HSPC). Moreover, a dynamic crosstalk between human ASC and murine host inflammatory signals was described, and specifically TSG-6 was identified as a necessary and sufficient mediator accounting for the activity of the ASC secretome to ameliorate CS-induced myelotoxicity. These results implicate TSG-6 as a key mediator for activities of ASC in mitigation of inflammation and protection of HSPC from the myelotoxicity of cigarette smoke. They also prompt the notion that ASC and TSG-6 might potentially play therapeutic roles in other scenarios involving myelotoxicity.

Page generated in 0.0909 seconds