Spelling suggestions: "subject:"microcarriers"" "subject:"microcarrier's""
1 |
The development of a bioartificial liver support systemBratch, Kaljit Kaur January 1999 (has links)
No description available.
|
2 |
Fabrication of polymeric microcarriers with reduced permeability using layer-by-layer, surface-initiated polymerization and emulsion techniquesZhao, Li January 2017 (has links)
In recent years, polymeric microcarriers have drawn great attention because of their potential applications in medical, cosmetic and some other industries. A variety of materials, preparation techniques have been explored to endow these microcarriers the desired properties. In spite of encouraging improvements in other properties, the low permeability of microcarriers remains a challenge which results in massive amount of cargo loss due to fast release. This work aimed to develop microcarriers with reduced permeability by coating with biocompatible and hydrophobic polymers via different techniques such as Layer-by-Layer, surface-initiated atom transfer radical polymerization and emulsion methods. This thesis starts with an introduction and literature review, which present the background of this work, followed by the description of materials as well as methods used in this work in chapter 3. Chapter 4 studied various parameters for fabricating structurally intact Poly(lactic acid) stereocomplex microcapsules, and demonstrated that heat treatment could significantly reduce the permeability of PLA microcapsules. In chapter 5, Layer-by-Layer and surface-initiated atom transfer radical polymerization techniques were combined to fabricate PMMA coated microparticles with low permeability. A polyelectrolyte macroinitiator and Poly(sodium 4-styrenesulfonate) were first deposited onto CaCO3 particles through LbL process, followed by growing PMMA brush layer via ATRP from the polyelectrolyte precursor. Chapter 6 introduced a simple emulsion method to prepare PLA coated CaCO3 microparticles with low permeability, which can retain bioactive molecules within the particles. It was found that 0.8 was the optimal CaCO3/PLA mass ratio in terms of the low permeability of microparticles as well as high-usage of polymers. In chapter 7, PLA films were synthesized from two different types of macroinitiators, with one being polyelectrolyte based and the other one being Poly(2-hydroxyethyl methacrylate) polymer brush precursor. The kinetics of PLA film growth from different precursors was compared whilst degradation of PLA films was also studied.
|
3 |
An Integrated Biomanufacturing Platform for the Large-Scale Expansion and Differentiation of Neural Progenitor CellsJanuary 2018 (has links)
abstract: Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, or amyotrophic lateral sclerosis are defined by the loss of several types of neurons and glial cells within the central nervous system (CNS). Combatting these diseases requires a robust population of relevant cell types that can be employed in cell therapies, drug screening, or patient specific disease modeling. Human induced pluripotent stem cells (hiPSC)-derived neural progenitor cells (hNPCs) have the ability to self-renew indefinitely and differentiate into the various neuronal and glial cell types of the CNS. In order to realize the potential of hNPCs, it is necessary to develop a xeno-free scalable platform for effective expansion and differentiation. Previous work in the Brafman lab led to the engineering of a chemically defined substrate—vitronectin derived peptide (VDP), which allows for the long-term expansion and differentiation of hNPCs. In this work, we use this substrate as the basis for a microcarrier (MC)-based suspension culture system. Several independently derived hNPC lines were cultured on MCs for multiple passages as well as efficiently differentiated to neurons. Finally, this MC-based system was used in conjunction with a low shear rotating wall vessel (RWV) bioreactor for the integrated, large-scale expansion and neuronal differentiation of hNPCs. Finally, VDP was shown to support the differentiation of hNPCs into functional astrocytes. Overall, this fully defined and scalable biomanufacturing system will facilitate the generation of hNPCs and their derivatives in quantities necessary for basic and translational applications. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2018
|
4 |
Combination of nano and microcarriers for stem cell therapy of Huntington's disease : new regenerative medicine strategy / Combinaison de nano et de microsupports pour la thérapie par cellules souches de la maladie de Huntington : nouvelle stratégie de médecine régénérativeAndré, Emilie 11 December 2015 (has links)
La combinaison de biomatériaux et cellules souches, a pour but de protéger des cellules endommagées et de ralentir la progression des maladies neurodégénératives, comme la maladie de Huntington (MH). Les cellules souches mésenchymateuses et particulièrement une sous-population, les cellules MIAMI, ont déjà démontré leur efficacité dans la maladie de Parkinson. Il est cependant essentiel d’améliorer leur différenciation neuronale, leur survie et évaluer leur sécrétome. L’objectif principal de ce travail fut de proposer une stratégie innovante de médecine régénératrice pour la MH associant cellules souches, nano et micro médecines. Pour l’évaluer, un nouveau modèle animale ex vivo de la MH a été mis en place. Nous avons ensuite développé et optimisé deux nano-vecteurs, des nanocapsules lipidiques et des nanoparticules solides de SPAN, et les avons associés à un inhibiteur de REST qui est un facteur de transcription qui empêche la différenciation neuronale. La transfection de ce siREST a montré une amélioration du phénotype neuronal. Ces cellules ainsi modifiées furent ensuite induites vers un phénotype GABAergic grâce à des facteurs de croissance. Puis elles ont été associées à un support 3D, les microcarriers pharmacologiquement actif (MPA) permettant une meilleure intégration des cellules après greffe. Les MPA sont des microsphères ayant une surface biomimétique de laminine et libérant de façon contrôlée un facteur trophique le « brain derived neurotrophic factor » (inducteur d’un phénotype neuronal et neuro-protecteur). Des résultats prometteurs ont été obtenus, encourageant à continuer l’évaluation de cette stratégie in vivo dans des modèles génétiques de la MH. / The combination of biomaterials and stem cells aims to protect damaged cells and slow the progression of neurodegenerative diseases such as Huntington's disease(HD). Mesenchymal stem cells, particularly a subpopulation known as MIAMI cells, have already demonstrated their effectiveness in Parkinson's disease. However, it is essential to improve their neuronal differentiation, survival, and to assess their secretome. The main objective of this work was to propose an innovative regenerative medicine strategy for HD by combining stemcells, micro and nano medicines. To perform this assessment, a new ex vivo animal model of HD has been set up. We then developed and optimized two nanovectors,lipid nanocapsules and solid SPAN nanoparticles,carrying an inhibitor of REST a transcription factor, which prevents neuronal differentiation. The transfection of this siREST showed an improvement in the neuronal phenotype. These modified cells were then induced into a GABAergic phenotype through growth factors. They were then associated with a 3D support, the pharmacologically active microcarriers (PAM) allowing a high rate of engraftment. The PAM are microspheres which have a biomimetic surface of laminin and release a trophic factor BDNF, brain derived neurotrophic factor (inducer of a neural phenotype and neuroprotective) in a controlled manner. Promising results were obtained, further encouraging continuing the evaluation of this strategy in vivo in genetic models of HD.
|
5 |
Controlled particle production by membrane emulsification for mammalian cell culture and releaseHanga, Mariana P. January 2014 (has links)
Existing commercially available microcarriers are very efficient at encouraging cell attachment and proliferation. However, recovery of the cells is problematic as it requires the use of proteolytic enzymes which are damaging to critical cell adhesion proteins. From this perspective, temperature responsive polymers appear to be a valid option. The current innovative study is to produce and engineer microcarriers in terms of particle size, surface coating and properties, as well as thermo-responsiveness for cell release. All these benefits are based on particle production by membrane emulsification to provide a highly controlled particle size. The polymer of choice is poly N-isopropylacrylamide (pNIPAM) because of the sharpness of its phase transition, biocompatibility and transition temperature close to the physiological value. These characteristics make pNIPAM a very attractive material for Tissue Engineering applications. Cells are cultured on the hydrophobic surface at 37??C and can be readily detached without using proteolytic enzymes from the surface by lowering the temperature to room temperature. The Dispersion Cell (MicroPore Technologies Ltd, UK) was successfully employed for the production of W/O emulsions. The generated monomer droplets were additionally solidified by applying a free radical polymerisation to manufacture solid pNIPAM microspheres. Additionally, calcium alginate particles were also generated and further functionalised with amine terminated pNIPAM to form temperature responsive core-shell particles by simply taking advantage of the electrostatic interactions between the carboxyl groups of the alginate and amino groups of the modified pNIPAM. Controlled particle production was achieved by varying process parameters and changing the recipe formulation (e.g. monomer concentration, surfactant concentration, pore size and inter-pore spacing, injection rate, shear stress applied at the membrane s surface). The manufactured particles were then analysed in terms of particle size and size distribution, chemical composition, surface analysis, shrinkage ratio and thermo-responsiveness and further sterilised and used for cell culture and release experiments. Swiss Albino 3T3 fibroblastic cells (ATCC, USA) were utilised to show proof-of-concept for this technology. Cell attachment and proliferation were assessed and successfully demonstrated qualitatively and quantitatively. pNIPAM solid particles, uncoated and with different protein coatings were shown to allow a limited degree of cell attachment and proliferation compared to a commercially available microcarrier. On a different approach, uncoated core-shell structures demonstrated improved capabilities for cell attachment and proliferation, similar to commercially available microcarriers. Having in mind the potential of temperature responsive polymers and the aim of this innovative study, cell detachment from the generated microcarriers was evaluated and compared to a commercially available temperature responsive surface. Necessary time for detachment was recorded and detached cells were recovered and reseeded onto tissue culture plastic surfaces in order to evaluate the replating and reattachment capabilities of the recovered cells. Successful cell detachment was achieved when using the core-shell structures as cell microcarriers, but the necessary time of detachment was of an order higher than that for the commercial temperature responsive surface.
|
6 |
Desenvolvimento de um bioprocesso para expansão de células mesenquimais estromais multipotentes em microcarregadores / Bioprocess development for expansion of mesenchymal stem cells on microcarriers.Caruso, Sâmia Rigotto 04 May 2012 (has links)
As células mesenquimais estromais multipotentes (CMM) são na atualidade uma fonte atrativa para aplicações na engenharia de tecidos e na terapia celular. Devido à baixa disponibilidade nos tecidos (0,01%-0,0005%) e às elevadas doses necessárias para uma infusão (aproximadamente 106 células/Kg paciente) tornou-se necessário o desenvolvimento de tecnologias de expansão in vitro, eficientes e de custo reduzido, que permitam a obtenção de CMM com manutenção das características funcionais (diferenciação e inibição da proliferação de linfócitos), imunofenotípicas e citogenéticas. As CMM são células aderentes, ou seja, necessitam de um substrato sólido para se aderir e proliferar. O procedimento convencional de expansão em garrafas estáticas, geralmente envolve um processo laborioso em que não há correto controle e monitoramento dos parâmetros de cultivo e possui uma maior susceptibilidade à contaminação devido à excessiva manipulação para atingir o número ideal de células. Além disso, este tipo de cultivo não permite uma produção em larga escala. Em função disso, o presente trabalho foi proposto com o objetivo de desenvolver um bioprocesso escalonável, economicamente viável e eficiente para expansão de CMM derivadas da medula óssea em microcarregadores. Para isso, as células foram cultivadas em microcarregador Cyotdex 3, em frasco spinner com o meio -MEM suplementado com 15% de SFB. Foram avaliadas neste trabalho, a adesão celular aos microcarregadores, crescimento, metabolismo, recuperação celular final e avaliação das propriedades funcionais e imunofenotípicas pré e pós cultivo, comparando ao cultivo já estabelecido em garrafas estáticas. De maneira geral, os resultados obtidos mostraram que foi possível expandir CMM utilizando a tecnologia de microcarregadores. A análise do metabolismo celular mostrou que não houve exaustão de nutrientes importantes como glicose e glutamina durante o cultivo, tampouco formação dos subprodutos lactato e amônia em concentrações inibitórias. As células recuperadas após a expansão mantiveram as características imunofenotípicas e funcionais. A produção média (n=10) foi de aproximadamente 4,9x105 cel/mL. Como o sistema utilizado permite o escalonamento, se utilizássemos um biorreator de 1L, seria possível a produção de aproximadamente 5x108 células que seriam suficientes para tratar mais de 3 pacientes de até 70Kg na dose de 2x106 células/Kg. Para expansão da mesma quantidade de células na forma tradicional seriam necessárias 135 garrafas de 175 cm2 com um custo total de expansão duas vezes superior à estimativa do custo de expansão utilizando microcarregadores. / Multipotent mesenchymal stromal cells are currently an attractive source for applications in tissue engineering and cell therapy. Due to the low availability in tissues (0,01%-0,0005%) and the high doses necessary for an infusion (about 106 cells/Kg patient), it has become necessary the development of effective and low cost technologies for in vitro expansion that enable to obtain MSC with maintenance of functional (differentiation and inhibition of lymphocytes proliferation), immunophenotypic and cytogenetics characteristics. MSC are adherent cells, i.e., they need a solid substrate to adhere and proliferate. The conventional procedure for expansion in static flasks normally involves a laborious process in which there is no suitable control and monitoring of the cultivation parameters besides presenting a higher susceptibility to contamination due to excessive manipulation to reach the ideal amount of cells. Moreover, this kind of cultivation does not allow a large scale production. For this reason, this work was proposed with the objective to develop a low cost, effective and scalable bioprocess for expansion of bone marrow-derived MSC in microcarriers. Cells grew on microcarriers Cyotdex 3, in spinner flasks with the -MEM medium supplemented with 15% FBS. We evaluated the cell adhesion to microcarriers, growth, metabolism, final cell recovery, and the functional and immunophenotypic properties before and after cultivation, comparing them with the cultivation already established in static flasks. In general, the results obtained showed that it was possible to expand MSC using microcarriers technology. The analysis of the cell metabolism showed that there was no depletion of important nutrients such as glucose and glutamine during cultivation, neither formation of lactate and ammonia subproducts in inhibitory concentrations. The cells recovered after the expansion kept the immunophenotypic and functional characteristics. The mean production (n=10) was about 4,9x105 cel/mL. As the system used allows the scale-up, if we had used a bioreactor of 1L it would had been possible to produce approximately 5x108 cells that would be enough to treat more than three patients of up to 70kg with a dose of 2x106 cells/kg. For the expansion of the same amount of cells in the traditional way, it would be necessary 135 T-flasks of 175 cm2 with total cost twice higher than the estimate cost of expansion using microcarriers.
|
7 |
Desenvolvimento de um bioprocesso para expansão de células mesenquimais estromais multipotentes em microcarregadores / Bioprocess development for expansion of mesenchymal stem cells on microcarriers.Sâmia Rigotto Caruso 04 May 2012 (has links)
As células mesenquimais estromais multipotentes (CMM) são na atualidade uma fonte atrativa para aplicações na engenharia de tecidos e na terapia celular. Devido à baixa disponibilidade nos tecidos (0,01%-0,0005%) e às elevadas doses necessárias para uma infusão (aproximadamente 106 células/Kg paciente) tornou-se necessário o desenvolvimento de tecnologias de expansão in vitro, eficientes e de custo reduzido, que permitam a obtenção de CMM com manutenção das características funcionais (diferenciação e inibição da proliferação de linfócitos), imunofenotípicas e citogenéticas. As CMM são células aderentes, ou seja, necessitam de um substrato sólido para se aderir e proliferar. O procedimento convencional de expansão em garrafas estáticas, geralmente envolve um processo laborioso em que não há correto controle e monitoramento dos parâmetros de cultivo e possui uma maior susceptibilidade à contaminação devido à excessiva manipulação para atingir o número ideal de células. Além disso, este tipo de cultivo não permite uma produção em larga escala. Em função disso, o presente trabalho foi proposto com o objetivo de desenvolver um bioprocesso escalonável, economicamente viável e eficiente para expansão de CMM derivadas da medula óssea em microcarregadores. Para isso, as células foram cultivadas em microcarregador Cyotdex 3, em frasco spinner com o meio -MEM suplementado com 15% de SFB. Foram avaliadas neste trabalho, a adesão celular aos microcarregadores, crescimento, metabolismo, recuperação celular final e avaliação das propriedades funcionais e imunofenotípicas pré e pós cultivo, comparando ao cultivo já estabelecido em garrafas estáticas. De maneira geral, os resultados obtidos mostraram que foi possível expandir CMM utilizando a tecnologia de microcarregadores. A análise do metabolismo celular mostrou que não houve exaustão de nutrientes importantes como glicose e glutamina durante o cultivo, tampouco formação dos subprodutos lactato e amônia em concentrações inibitórias. As células recuperadas após a expansão mantiveram as características imunofenotípicas e funcionais. A produção média (n=10) foi de aproximadamente 4,9x105 cel/mL. Como o sistema utilizado permite o escalonamento, se utilizássemos um biorreator de 1L, seria possível a produção de aproximadamente 5x108 células que seriam suficientes para tratar mais de 3 pacientes de até 70Kg na dose de 2x106 células/Kg. Para expansão da mesma quantidade de células na forma tradicional seriam necessárias 135 garrafas de 175 cm2 com um custo total de expansão duas vezes superior à estimativa do custo de expansão utilizando microcarregadores. / Multipotent mesenchymal stromal cells are currently an attractive source for applications in tissue engineering and cell therapy. Due to the low availability in tissues (0,01%-0,0005%) and the high doses necessary for an infusion (about 106 cells/Kg patient), it has become necessary the development of effective and low cost technologies for in vitro expansion that enable to obtain MSC with maintenance of functional (differentiation and inhibition of lymphocytes proliferation), immunophenotypic and cytogenetics characteristics. MSC are adherent cells, i.e., they need a solid substrate to adhere and proliferate. The conventional procedure for expansion in static flasks normally involves a laborious process in which there is no suitable control and monitoring of the cultivation parameters besides presenting a higher susceptibility to contamination due to excessive manipulation to reach the ideal amount of cells. Moreover, this kind of cultivation does not allow a large scale production. For this reason, this work was proposed with the objective to develop a low cost, effective and scalable bioprocess for expansion of bone marrow-derived MSC in microcarriers. Cells grew on microcarriers Cyotdex 3, in spinner flasks with the -MEM medium supplemented with 15% FBS. We evaluated the cell adhesion to microcarriers, growth, metabolism, final cell recovery, and the functional and immunophenotypic properties before and after cultivation, comparing them with the cultivation already established in static flasks. In general, the results obtained showed that it was possible to expand MSC using microcarriers technology. The analysis of the cell metabolism showed that there was no depletion of important nutrients such as glucose and glutamine during cultivation, neither formation of lactate and ammonia subproducts in inhibitory concentrations. The cells recovered after the expansion kept the immunophenotypic and functional characteristics. The mean production (n=10) was about 4,9x105 cel/mL. As the system used allows the scale-up, if we had used a bioreactor of 1L it would had been possible to produce approximately 5x108 cells that would be enough to treat more than three patients of up to 70kg with a dose of 2x106 cells/kg. For the expansion of the same amount of cells in the traditional way, it would be necessary 135 T-flasks of 175 cm2 with total cost twice higher than the estimate cost of expansion using microcarriers.
|
8 |
Large Scale Expansion and Differentiation of Human Pluripotent Stem Cell-Derived Neural Progenitor Cells (hNPCs)January 2017 (has links)
abstract: Neurodegenerative diseases such as Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis are marked by the loss of different types of neurons and glial cells in the central nervous system (CNS). Human Pluripotent Stem Cell (hPSC)-derived Neural Progenitor Cells (hNPCs) have the ability to self-renew indefinitely and to differentiate into various cell types of the CNS. HNPCs can be used in cell based therapies and have the potential to reverse or arrest neurodegeneration and to replace lost neurons and glial cells. However, the lack of completely defined, scalable systems to culture these cells, limits their therapeutic and clinical applications. In a previous study, a completely defined, robust, synthetic peptide- a Vitronectin Derived Peptide (VDP) that supports the long term expansion and differentiation of various embryonic and induced pluripotent stem cell (hESC/hIPSC) derived hNPC lines on two dimensional (2D) tissue culture plates was identified. In this study, the culture of hNPCs was scaled up using VDP coated microcarriers (MC). VDP MC were able to support the long term expansion of hESC and hiPSC derived hNPCs over multiple passages and supported higher fold changes in cell densities, compared to VDP coated 2D surfaces. VDP MC also showed the ability to support the neuronal differentiation of hNPCs, and produced mature neurons expressing several neuronal, neurotransmitter and cortical markers. Additionally, alzheimer’s disease (AD) relevant phenotypes were studied in patient hIPSC derived hNPCs cultured on laminin MC to assess if the MC culture system could be used for disease modelling and drug screening. Finally, a microcarrier based bioreactor system was developed for the large scale expansion of hNPCs, exhibiting more than a five-fold change in cell density and supporting more than 100 million hNPCs in culture. Thus, the development of a xeno-free, scalable system allows hNPC culture under standard and reproducible conditions in quantities required for therapeutic and clinical applications. / Dissertation/Thesis / Masters Thesis Bioengineering 2017
|
9 |
Vecteurs synthétiques et approche mécano-biologique permettant d’optimiser l’utilisation des cellules souches en médecine régénérative / Synthetic vectors and mechano-biological approach to optimize the use of stem cells in regenerative medicineRmaidi, Assia 01 July 2019 (has links)
Une approche de la médecine régénérative du système nerveux consiste à développer des substituts biologiques avec une fonction réparatrice en utilisant des cellules souches et des biomatériaux qui peuvent être recouverts des molécules de la matrice extracellulaire. Nous avons ainsi développé des microcarriers pharmacologiquements actifs, MPA. Ce sont des microsphères (MS) polymériques à base de PLGA, biodégradables et biocompatibles, recouvertes des molécules d’adhérence qui fournissent un support en 3-dimensions aux cellules. Les microcarriers ainsi associés aux cellules souches permettent, après implantation, d’augmenter la survie et de maintenir l’état de différenciation des cellules qu’ils portent,renforçant leurs effets de réparation tissulaire. Ces MPA peuvent également libérer des facteurs de croissance encapsulés et afin d’améliorer le relargage de protéines encapsulées une nouvelle combinaison de polymère : PLGA-Poloxamer188 (P188) -PLGA a été développé dans notre laboratoire. Il a aussi été montré que les MPA de PLGA-P188-PLGA fonctionnalisées avec de la fibronectine et poly-D-lysine induisaient une meilleure prolifération de cellules souches mésenchymateuses que les MPA de PLGA.Ces cellules sont très largement utilisées en médecine régénérative car elles sont faciles à prélever, se trouvant dans la moelle osseuse, et capables de se différencier vers le lignage chondrogénique, ostéogénique et dans certaines conditions, neuronale. Nous travaillons avec une sous population de ces cellules appelées cellules MIAMI (marrow isolated adult multilineage inducible) qui s’engagent vers une différenciation en cellule neuronale après un traitement avec 2 facteurs de croissance (EGF/ bFGF) et sur un support matriciel de laminine. Dernièrement, il a été mis en évidence que les propriétés physicochimiques des supports polymériques régissent également le comportement des cellules souches(adhésion, survie et différenciation). L’objectif de cette étude est d’étudier l’effet des propriétés physicochimiques et mécaniques des surfaces i) des MS sur l’adsorption de laminine et poly-D-lysine et ii) des MPA sur l’adhérence et la différenciation neuronale des cellules MIAMI. Nous avons montré que la présence du bloc hydrophile « poloxamère 188 » dans la composition du polymère PLGA-P188-PLGAdiminue l’adsorption de molécules d’adhérence en formant une couche sur ces surfaces. Sur les MPA de PLGA, les molécules d’adhérence s’adsorbent bien quelle que soit la charge globale des molécules. Cesdeux MPA ont une charge globale positive et permettent l’attachement de cellules à leur surface. Cependant, l’adhérence à court terme de cellules est plus forte sur les MPA de PLGA comparé aux MPA de PLGA-P188-PLGA mais à la longue les cellules finissent par adhérer aux deux supports. Le PLGAP188-PLGA présente une forte énergie libre de surface et ces MPA présentent une surface moins rigide que les MPA de PLGA. Nos résultats suggèrent que ces caractéristiques de surface permettent aux cellules d’adhérer malgré la faible quantité de laminine sur ces supports. A long terme les cellules présentent le même comportement quel que soit le type du support. Elles se différencient en cellule de type neuronal exprimant des marqueurs de neurone mature comme le neurofilament et nous trouvons le même nombre de cellules adhérées à leur surface. En outre, nous avons montré que les cellules sont capables de sécréter de la même manière des molécules de la matrice extracellulaire sur les deux types de MPA expliquant probablement la similitude de comportement à long terme. / An approach to regenerative nervous system medicine is to develop biological substitutes with restorative function using stem cells and biomaterials that can be coated with extracellular matrix molecules. We have developed pharmacologically active microcarriers, PAMs. These are PLGA based, biodegradable and biocompatible polymeric microspheres (MS) coated with adhesion molecules that provide 3-dimensional support for cells. The microcarriers thus associated with the stem cells make it possible, after implantation, to increase the survival and maintain the state of differentiation of the cells they carry, reinforcing their tissue repair effects. These PAMs can also release encapsulated growth factors and to enhance the release of encapsulated proteins a new polymer combination: PLGA-Poloxamer188 (P188) -PLGA has been developed in our laboratory. It has also been shown that PLGA-P188-PLGA PAMs functionalized with fibronectin and poly-Dlysineinduce better proliferation of mesenchymal stem cells than PLGA PAMs. These cells are very widely used in regenerative medicine because they are easy to collect, found in the bone marrow, and able to differentiate towards the chondrogenic lineage, osteogenic and under certain conditions,neuronal. We are working with a subpopulation of these cells called MIAMI cells (marrow isolated adult multilineage inducible) that engage in neuronal cell differentiation after treatment with 2growth factors (EGF / bFGF) and on a laminin matrix support. Recently, it has been demonstrated that the physicochemical properties of polymeric supports also regulate the behavior of stem cells (adhesion, survival and differentiation). The objective of this study is to study the effect of physicochemical and mechanical properties of surfaces i) MS on laminin and poly-D-lysineadsorption and ii) PAMs on adhesion and neuronal differentiation of MIAMI cells. We have shown that the presence of the hydrophilic "poloxamer 188" block in the PLGA-P188-PLGA polymer composition decreases the adsorption of adhesion molecules by forming a layer on these surfaces.On PLGA PAMs, the adhesion molecules adsorb well regardless of the overall charge of the molecules. These two PAMs have a positive overall charge and allow the attachment of cells to their surface. However, in short-term cell adhesion is stronger on PLGA PAMs compared to PLGA-P188-PLGA PAMs, but in the long-term the cells eventually adhere to both supports. PLGA-P188-PLGAhas a high free surface energy and these PAMs have a less rigid surface than PLGA PAMs. Our results suggest that these surface characteristics allow cells to adhere despite the low amount of laminin on these supports. In the long-term the cells exhibit the same behavior whatever the type of PAMs. They differentiate into neuronal cells expressing mature neuron markers such as the neurofilament-M and we find the same number of cells adhered to their surface. Furthermore, we have shown that cells are able to secrete extracellular matrix molecules in the same way on both types of PAMs, probably explaining the similarity of the behavior in long-term.
|
10 |
Études cinétiques de procédés d'expansion de cellules souches mésenchymateuses cultivées sur microporteurs en systèmes agités / Kinetic studies of expansion processes of mesenchymal stem cells cultivated on microcarriers in agitated systemsFerrari, Caroline 09 November 2012 (has links)
L'utilisation grandissante des cellules souches mésenchymateuses (CSM) en ingénierie tissulaire augmente la nécessité d'améliorer leur expansion. Ces travaux ont concerné l'étude d'un procédé performant d'expansion de CSM porcines en mode agité. Tout d'abord, un milieu de culture a été adapté aux CSM porcines multipotentes. Puis, différents modes d'expansion en conditions agitées ont été évalués avec les cellules fixées sur des microporteurs. La culture sur le microporteur Cytodex 1 a permis d'atteindre une vitesse spécifique de croissance de 0,54 j-1, supérieure à celle observée en flacon statique (0,31 j-1), avec les mêmes conditions de culture. En parallèle, une méthode de comptage innovante a été proposée pour le dénombrement automatique des cellules cultivées sur Cytodex 1, sans passer par une étape de trypsination. Enfin, les conditions opératoires du procédé d'expansion ont été étudiées. En comparaison d'une culture de CSM sur Cytodex 1 sans agitation, une agrégation des cellules et une baisse apparente de la concentration cellulaire ont été observées à 25 et 75 rpm. Par ailleurs, l'ajout de microporteurs au cours d'une culture de 300 h, réalisée dans un système de culture agité à 25 rpm et dans un volume de 200 mL, a permis de prolonger la prolifération cellulaire en évitant l'agrégation tout en maintenant la multipotence des CSM. Une concentration cellulaire de 3 x 105 cellules/mL a été obtenue, au lieu de 1,2 x 105 cellules/mL en flacons statiques avec les mêmes conditions de culture. Un procédé performant d'expansion de CSM porcines en conditions agitées a ainsi pu être proposé / The extensive use of mesenchymal stem cells (MSC) in tissue engineering increases the necessity to improve the expansion performance. This work aimed at studying an efficient expansion process for porcine MSC in agitated mode. First, a culture medium was adapted to the multipotent porcine MSC. Then, various expansion modes and agitation conditions were evaluated with the cells fixed on microcarriers. Cultures on the Cytodex 1 microcarrier enabled to reach a specific growth rate of 0.54 d-1, which was higher than the one observed in static T-flasks (0.31 d-1), with the same culture conditions. In parallel, an innovative counting method was proposed for the automatic enumeration of cells cultivated on Cytodex 1, without passing by a trypsination step. Finally, the operating conditions of the expansion process were studied. Compared to a culture of MSC on non-agitated Cytodex 1 microcarriers, cell aggregation occurred and an apparent decrease in the cell concentration was observed at an agitation rate of 25 and 75 rpm. Moreover, the addition of microcarriers during a 300 h culture, performed in an agitated culture at 25 rpm and in a volume of 200 mL enabled to prolong the cell proliferation without any aggregation, while maintaining the multipotency of the cells. A cell concentration of 3 x 105 cells/mL was obtained, instead of the 1.2 x 105 cells/mL in static flasks with the same culture conditions. An efficient expansion process for porcine MSC under agitated conditions has therefore been proposed
|
Page generated in 0.0478 seconds