• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 8
  • 6
  • 2
  • 2
  • Tagged with
  • 45
  • 45
  • 24
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

温度分布を規定する強制熱対流場の形状同定

片峯, 英次, KATAMINE, Eiji, 織田, 恭平, ODA, Kyohei, 畔上, 秀幸, AZEGAMI, Hideyuki 03 1900 (has links)
No description available.
12

熱変形分布を規定する熱弾性場における形状同定問題の解法

片峯, 英次, KATAMINE, Eiji, 平井, 雅大, HIRAI, Masahiro, 畔上, 秀幸, AZEGAMI, Hideyuki 09 1900 (has links)
No description available.
13

On Mesh Convergence and Accuracy Behaviour for CFD Applications

Elraghy, Abdalla 11 July 2013 (has links)
Computational Fluid Dynamics (CFD) is a main field that contributes to the development of high efficiency aircraft. CFD accuracy depends on the flow solver and the meshing of the geometry, and while it is doable to determine why a certain solver is more accurate than another, it is much more difficult to discern why two meshes produce differently accurate solutions. A framework is presented to evaluate the performance or ``goodness" of a mesh and to compare meshes. The framework is composed of quantifiable mesh parameters which define a mesh, and three performance measures: functional accuracy, their order of convergence, and their behaviour under the adjoint correction method. Although it seems that the relationships between parameters and results are not trivial, there are trends from which optimal mesh parameters are deduced. The H topology performs best, and the most important parameters are related to spacings and cell quality around the aerofoil leading edge.
14

On Mesh Convergence and Accuracy Behaviour for CFD Applications

Elraghy, Abdalla 11 July 2013 (has links)
Computational Fluid Dynamics (CFD) is a main field that contributes to the development of high efficiency aircraft. CFD accuracy depends on the flow solver and the meshing of the geometry, and while it is doable to determine why a certain solver is more accurate than another, it is much more difficult to discern why two meshes produce differently accurate solutions. A framework is presented to evaluate the performance or ``goodness" of a mesh and to compare meshes. The framework is composed of quantifiable mesh parameters which define a mesh, and three performance measures: functional accuracy, their order of convergence, and their behaviour under the adjoint correction method. Although it seems that the relationships between parameters and results are not trivial, there are trends from which optimal mesh parameters are deduced. The H topology performs best, and the most important parameters are related to spacings and cell quality around the aerofoil leading edge.
15

抗力最小化・揚力最大化を目的とした定常粘性流れ場の形状最適化

AZEGAMI, Hideyuki, NISHIHASHI, Naoshi, KATAMINE, Eiji, 畔上, 秀幸, 西橋, 直志, 片峯, 英次 12 1900 (has links)
No description available.
16

平均コンプライアンス最小化を目的とした熱弾性場の形状最適化

AZEGAMI, Hideyuki, MATSUURA, Kousuke, YOSHIOKA, Hiroki, KATAMINE, Eiji, 畔上, 秀幸, 松浦, 浩佑, 吉岡, 広起, 片峯, 英次 11 1900 (has links)
No description available.
17

Techniques de calcul de gradient aéro-structure haute-fidélité pour l'optimisation de voilures flexibles / High-fidelity aerostructural gradient computation techniques for flexible wing optimization

Achard, Timothée 08 December 2017 (has links)
L'optimisation multidisciplinaire (MDO) à base de gradients est efficace et très utilisée pour le dimensionnement structural d'ailes flexibles. Cependant, dans le contexte de simulations numériques haute-fidélité, le calcul efficace des gradients reste un défi majeur. L'objectif de ce travail est d'étudier les approches les mieux adaptées aux spécificités du calcul de sensibilité des efforts aéroélastiques par rapport à des paramètres structuraux.Deux techniques de calcul de gradient haute-fidélité adaptées aux systèmes aéroélastiques fortement couplés sont proposées. La technique la plus intrusive repose sur les formulations directe et adjointe qui nécessitent un effort d'implémentation logicielle substantiel. Alternativement, nous proposons une approche découplée et non-intrusive, moins lourde à implémenter et cependant capable de fournir une approximation précise des gradients. Ces deux techniques ont été intégrées dans le logiciel CFD elsA de l'Onera.La précision, l'efficience et l'applicabilité de ces méthodes sont démontrées sur le cas-test avion de transport civil Common Research Model (CRM). Nous résolvons un problème inverse dont l'objectif est de retrouver, en conditions de vol de croisière, une loi cible de vrillage voilure. Ces deux méthodes s'avèrent comparables en matière de précision et de coût. Elles offrent ainsi une souplesse supplémentaire de mise en œuvre en fonction du niveau d'intégration recherché dans le processus MDO. / To improve the structural design of flexible wings, gradient based Multidisciplinary Design Optimization (MDO) techniques are effective and widely used. However, gradients calculation is not trivial and can be costly when high-fidelity models are considered. Our objective is to study different suitable approaches to compute gradients of aeroelastic loads with respect to structural design parameters.To this end, two high-fidelity aero-structure gradient computation techniques for strongly coupled aeroelastic systems are proposed. The most intrusive technique includes the well-established direct and adjoint formulations that require substantial implementation effort. In contrast, we propose an alternative uncoupled non-intrusive approach easier to implement and yet capable of providing accurate gradients approximations. Both techniques have been implemented in the Onera elsA CFD software.Accuracy, efficiency and applicability of these methods are demonstrated on the civil transport aircraft Common Research Model (CRM) test-case. More specifically, an inverse design problem is set up with the objective of matching an in-flight target twist law distribution. These two methods prove to be comparable in terms of accuracy and cost. Thus they offer additional operational flexibility depending on the level of integration sought in the MDO process.
18

Cálculo de sensibilidades não-geométricas em escoamentos modelados pelas equações de Euler compressíveis utilizando o método adjunto. / Computation of non-geometric sensitivities for flows modeled by the compressible Euler equations using the adjoint method.

Marcelo Tanaka Hayashi 07 April 2016 (has links)
O método adjunto tem sido extensivamente utilizado como ferramenta de síntese no projeto de aeronaves por permitir que se obtenham sensibilidades de distintas medidas de mérito com relação a parâmetros que controlam a geometria de superfícies aerodinâmicas. O presente trabalho visa uma ampliação das aplicações da formulação contínua do método, ao utilizar propriedades físicas do escoamento nas fronteiras permeáveis do domínio computacional como parâmetros de controle de uma particular medida de mérito. Desse modo é possível, entre muitas possibilidades, determinar a sensibilidade de integrais como sustentação ou arrasto de uma aeronave com relação às condições de cruzeiro, por exemplo. Mais do que isso, essa informação pode ser obtida com a mesma solução adjunta computada para realizar otimização de forma. Vale destacar, ainda, que para que se consiga obter essa informação a partir das equações adjuntas, é necessário que se implemente condições de contorno baseadas em equações diferenciais características, resolvendo o problema de Riemann completo nas fronteiras do domínio. A implementação das usuais condições de contorno homogêneas, vastamente difundidas na literatura, resultaria em gradientes nulos. Esta nova abordagem do método é então aplicada a escoamentos modelados pelas equações de Euler 2-D compressíveis em estado estacionário. Ambos os problemas, físico e adjunto, são resolvidos numericamente com um código computacional que utiliza o método dos volumes finitos com segunda ordem de precisão no espaço e discretização centrada com dissipação artificial. As soluções estacionárias são obtidas ao se postular um termo tempo-dependente e integra-lo com um esquema Runge-Kutta de 5 passos e 2a ordem de precisão. As simulações são realizadas em malhas não-estruturadas formadas por elementos triangulares em 4 geometrias distintas: um bocal divergente, um perfil diamante, um aerofólio simétrico (NACA 0012) e o outro assimétrico (RAE 2822). Os gradientes adjuntos são então validados por meio da comparação com os obtidos pelo método de diferenças finitas nos regimes de escoamento subsônico, supersônico e transônico. / The adjoint method has been extensively used as an aircraft design tool, since it enables one to obtain sensitivities of many different mesures of merit with respect to parameters that control the aerodynamic surface geometry. This works aims to open up the possibilities of the method\'s applications by using flow physical properties at the permeable boundaries of the computational domain as control parameters of a particular measure of merit. This way it is possible, among many possibilities, to compute lift or drag sensitivities of an aircraft with respect to cruise conditions, for instance. Moreover, this information can be obtained with the same adjoint solution used to perform shape optimization. It is also worth noting that in order to obtain this information from the adjoint equations it is necessary to implement characteristics-based boundary conditions, resolving the complete Riemann problem at the boundaries of the computational domain. The use of the traditional homogeneous boundary conditions, widely spread in the literature, would lead the gradient to vanish. This new approach of the method is, then, applied to flows modeled by the 2-D steady state compressible Euler equations. Both, physical and adjoint problems are numerically solved with a computational code that makes use of a 2nd order finite volume method and central differences with artifficial dissipation. The steady solutions are obtained by postulating a time-dependent term and integrating it with a 5-stage 2nd order Runge-Kutta scheme. The simulations are performed on unstructured triangular meshes to 4 different geometries: a divergent nozzle, a diamond profile, a symmetric airfoil (NACA 0012) and a assymmetric airfoil (RAE 2822). The adjoint gradients are then validated by comparison with those obtained by finite differences method in subsonic, supersonic and transonic flow regimes.
19

Cálculo de sensibilidades geométricas e não-geométricas para escoamentos viscosos incompressíveis utilizando o método adjunto. / Computation of geometric and non-geometric sensitivities for viscous incompressible flows using the adjoint method.

João de Sá Brasil Lima 22 September 2017 (has links)
Problemas de otimização se fazem cada vez mais presentes nos mais diversos ramos da Engenharia. Encontrar configurações ótimas para um determinado problema significa, por exemplo, melhorar desempenho, reduzir custos entre outros ganhos. Existem hoje diversas maneiras de atacar um problema de otimização, cada qual com suas particularidades, vantagens e desvantagens. Dentre os métodos de otimização que utilizam gradientes de sensibilidade, o cálculo numérico dos mesmos consiste em uma importante etapa do projeto que, dependendo do problema, pode acarretar em custos computacionais muito elevados inviabilizando a abordagem escolhida. Este trabalho visa desenvolver e apresentar uma nova metodologia para o cálculo desses gradientes de sensibilidade, com base no Método Adjunto. O Método Adjunto é um método amplamente estudado e com diversas aplicações principalmente em Engenharia Aeronáutica. Nesse trabalho, todo o conhecimento prévio é utilizado para a derivação do método para aplicá-lo a escoamentos viscosos e incompressíveis. É desenvolvido também o cálculo do gradiente de sensibilidade com respeito a parâmetros geométricos e não geométricos. Para validar a metodologia proposta são feitas simulações numéricas das equações governantes do escoamento e adjuntas utilizando dois códigos computacionais distintos, SEMTEX e FreeFem++, o primeiro baseado no Método dos Elementos Espectrais e o segundo no Método dos Elementos Finitos, mostrando assim a independência do Método Adjunto na sua formulação contínua em relação a métodos computacionais. Para a validação são cujos gradientes possam ser calculados de outras formas permitindo comparações para calibrar e aperfeiçoar o cálculo do gradiente de sensibilidade. / Optimization problems are widely present in differents fields of Engineering. Finding optimal configurations in a problem means, for example, improving performance, reducing costs, among other achievements. There are several wellknown ways to tackle an optimization problem, each one has its own advantages and disadvantages. Considering the gradient-based optimization methods, the step of their numerical calculation is extremely important, as it may result in huge computational costs, thus making the chosen method impracticable. This work aims to develop and present a new methodology to compute these sensitivity gradients based on the Adjoint Method. The Adjoint Method is a widely studied method with several applications chiefly in A eronautical Engineering. In the present work, all the previous knowledge will be used to derive the equations of the method in order to apply them to viscous incompressible flows. The calculation of the sensitivity gradient, with respect to both geometric and non-geometric paramatersm will be developed as well. To validate the proposed methodology, numerical simulations of the governing and adjoint equations are carried out, using two computational codes called SEMTEX and FreeFem++, the former is based on the Spectral Element Method and the later, on the Finite Element Method, thus showing that the Adjoint Method, in its continuous formulation, is independent of the particular numerical method that is used. In order to validate the algorithm, simple problems are chosen, for which the gradients can be computed by other methods. This choice admits comparison between numerical values of gradients in order to calibrate and improve the methodology proposed.
20

Optimisation de forme par méthode Level Set pour les équations intégrales de l’électromagnétisme : Application à la conception d’antennes / Shape optimization by a Level Set method for electromagnetic integral equations : application to antenna design

Coquan, Sophie 28 September 2016 (has links)
Cette thèse vise à mettre en place une méthode de calcul automatique de forme optimale pour les antennes, par modification de la forme des motifs métalliques constituant les éléments rayonnants d'une antenne. La première partie propose un état de l'art des deux principales thématiques de cette thèse. Le chapitre 1 présente la simulation électromagnétique des antennes, basée sur la méthode des équations intégrales et résolue par éléments finis de frontière. Le chapitre 2 présente l'algorithme d'optimisation de forme utilisé, qui couple une analyse de sensibilité avec la méthode Level Set pour l’évolution de la géométrie. La deuxième partie s’intéresse à l'application de cet algorithme d'optimisation au problème qui a motivé cette thèse, à savoir le calcul de la forme optimale d'un motif métallique sur un élément rayonnant. Le calcul des champs électriques et magnétiques est effectué par la méthode des équations intégrales, qui renvoie notamment l’observable à minimiser : le coefficient de réflexion de l’antenne. Les chapitres 3 et 4 présentent les aspects théoriques de ce travail, dans le domaine continu et le domaine discret respectivement. La troisième partie explique la mise en œuvre numérique des résultats établis théoriquement dans la partie 2. Le chapitre 5 décrit la boucle globale de l'algorithme d'optimisation de forme. Les résultats obtenus par cet algorithme sont présentés dans le chapitre 6 : ils s’appuient sur plusieurs éléments rayonnants dont la forme de la métallisation évolue afin d’optimiser le coefficient de réflexion ainsi que d'autres critères dérivés. / This thesis aims at establishing a method which computes automatically the optimal design of an antenna, by modifying the shape of metallic patterns constituting the radiating elements of an antenna. In the first part is proposed a state of the art of the two main topics of this thesis. The electromagnetic simulation of antennas based on the integral equations method and solved by the boundary elements method is presented in Chapter 1. Chapter 2 presents the utilized shape optimization algorithm, which combines a sensitivity analysis and the Level Set method for tracking the evolution of the geometry. The second part deals with the application of this optimization algorithm to the problem that motivated this thesis, namely computing the optimal shape of a metallic pattern on a radiating element. The electric and magnetic fields computation is performed by the integral equation method which returns, among others, the observable to minimize: the reflection coefficient. Chapters 3 and 4 present the theoretical aspects of this work, in the continuous domain and the discrete domain respectively. In part 3 is explained the numerical implementation of the theoretical results established in part 2. Chapter 5 addresses the global loop of the shape optimization algorithm. The numerical results obtained by this algorithm are set out in chapter 6: they are based on several radiating elements whose shape of the metallization evolves in order to optimize the reflection coefficient as well as other derived criteria.

Page generated in 0.059 seconds