• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Artificial Neural Networks for Admission Control in Firm Real-Time Systems

Helgason, Magnus Thor January 2000 (has links)
<p>Admission controllers in dynamic real-time systems perform traditional schedulability tests in order to determine whether incoming tasks will meet their deadlines. These tests are computationally expensive and typically run in n * log n time where n is the number of tasks in the system. An incoming task might therefore miss its deadline while the schedulability test is being performed, when there is a heavy load on the system. In our work we evaluate a new approach for admission control in firm real-time systems. Our work shows that ANNs can be used to perform a schedulability test in order to work as an admission controller in firm real-time systems. By integrating the ANN admission controller to a real-time simulator we show that our approach provides feasible performance compared to a traditional approach. The ANNs are able to make up to 86% correct admission decisions in our simulations and the computational cost of our ANN schedulability test has a constant value independent of the load of the system. Our results also show that the computational cost of a traditional approach increases as a function of n log n where n is the number of tasks in the system.</p>
2

Using Artificial Neural Networks for Admission Control in Firm Real-Time Systems

Helgason, Magnus Thor January 2000 (has links)
Admission controllers in dynamic real-time systems perform traditional schedulability tests in order to determine whether incoming tasks will meet their deadlines. These tests are computationally expensive and typically run in n * log n time where n is the number of tasks in the system. An incoming task might therefore miss its deadline while the schedulability test is being performed, when there is a heavy load on the system. In our work we evaluate a new approach for admission control in firm real-time systems. Our work shows that ANNs can be used to perform a schedulability test in order to work as an admission controller in firm real-time systems. By integrating the ANN admission controller to a real-time simulator we show that our approach provides feasible performance compared to a traditional approach. The ANNs are able to make up to 86% correct admission decisions in our simulations and the computational cost of our ANN schedulability test has a constant value independent of the load of the system. Our results also show that the computational cost of a traditional approach increases as a function of n log n where n is the number of tasks in the system.

Page generated in 0.0615 seconds