• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selective oxidation and reactive wetting of an Fe-0.15C-5.5Mn-1.17Si-1Al advanced high strength steel (AHSS) during hot-dip galvanizing

Gol, Saba January 2021 (has links)
Third-generation advanced high-strength steels (3G AHSS) are being developed to assist in vehicle light weighting so that fuel efficiency may be improved without sacrificing passenger safety. 3G-AHSS have received significant interest from the automotive industry as a critical candidate for their unique combination of high strength and ductility. However, due to selective oxidation of the principal alloying elements such as Mn, Si, Al, and Cr at the steel surface during the annealing stage prior to immersion in the galvanizing Zn(Al, Fe) bath, the process of continuous hot-dip galvanizing of these steel is challenging. This thesis determined the influence of annealing process parameters such as oxygen partial pressure and annealing time, on the selective oxidation and reactive wetting of an Fe-0.15C-5.56Mn-1.17Si-1Al (wt%) prototype 3G AHSS during intercritical annealing as well as continuous galvanizing. Simulated annealing and galvanizing were conducted on the prototype Fe-0.15C-5.56Mn-0117Si-1Al (wt%) 3G steel; Intercritical annealing heat treatments were carried out at 690˚C in a N2-5 vol pct H2 process atmosphere under dew points of 223 K (–50 °C), 243 (–30 °C) and 268 K (–5 °C). MnO was the major oxide formed at the outmost layer of the external oxides on all annealed samples. The experimental parameters, on the other hand, had a substantial impact on the morphology, distribution, thickness, and surface oxide coverage. The greatest Mn surface concentration as well as maximum surface oxide coverage and thickness was obtained by annealing the panels under the 223 K (–50 °C) and 243 (–30 °C) dp process atmospheres. The oxides formed under these process atmospheres largely comprised coarse, compact, and continuous film nodules. In contrast, MnO nodules formed under the 268 K (–5 °C) dewpoint process, exhibited wider spacing between finer and thinner nodules, which was consistent with the internal oxidation mode, while under 223 K (–50 °C) dp process atmosphere, generally external oxidation took place. Poor reactive wetting was obtained for the panels annealed under the 223 K (–50 °C) dp process atmosphere for both the 60 s and 120 s holding times as well as the 243 K (–30 °C) dp process atmosphere for 120 s. This was attributed to the formation of a thick, compact oxide layer on the steel surface, which acted as a barrier between the substrate and Zn bath, preventing Fe dissolution from the substrate surface for the formation of the desired Fe2Al5Znx interfacial layer. However, a well-developed interfacial Fe-Al intermetallic layer was formed under the 268 K (–5 °C) and 243 (–30 °C) dp process atmospheres for intercritical annealing times of 60 s, which is indicative of a good reactive wetting since the thinner and nodule-like oxides on the steel surface after annealing encourage the reactive wetting. External oxides morphology plays a dominant role in facilitating the contact between Zn-alloy bath and the substrate via different mechanisms such as aluminothermic reduction which occurred for the sample annealed under the 268 K (–5 °C) dp process atmosphere. / Thesis / Master of Applied Science (MASc)
2

Spot Welding of Advanced High Strength Steels (AHSS)

Khan, Mohammad Ibraheem 20 April 2007 (has links)
Efforts to reduce vehicle weight and improve crash performance have resulted in increased application of advanced high strength steels (AHSS) and a recent focus on the weldability of these alloys. Resistance spot welding (RSW) is the primary sheet metal welding process in the manufacture of automotive assemblies. Integration of AHSS into the automotive architecture has brought renewed challenges for achieving acceptable welds. The varying alloying content and processing techniques has further complicated this initiative. The current study examines resistance spot welding of high strength and advance high strength steels including high strength low alloy (HSLA), dual phase (DP) and a ferritic-bainitic steel (590R). The mechanical properties and microstructure of these RSW welded steel alloys are detailed. Furthermore a relationship between chemistries and hardness is produced. The effect of strain rate on the joint strength and failure mode is also an important consideration in the design of welded structures. Current literature, however, does not explain the effects of weld microstructure and there are no comprehensive comparisons of steels. This work details the relationship between the joint microstructure and impact performance of spot welded AHSS. Quasi-static and impact tests were conducted using a universal tensile tester and an instrumented drop tower, respectively. Results for elongation, failure load and energy absorption for each material are presented. Failure modes are detailed by observing weld fracture surfaces. In addition, cross-sections of partially fractured weldments were examined to detail fracture paths during static loading. Correlations between the fracture path and mechanical properties are developed using observed microstructures in the fusion zone and heat-affected-zone. Friction stir spot welding (FSSW) has proven to be a potential candidate for spot welding AHSS. A comparative study of RSW and FSSW on spot welding AHSS has also been completed. The objective of this work is to compare the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds conducted using both processes. This was accomplished by examining the metallurgical cross-sections and local hardnesses of various spot weld regions. High speed data acquisition was also used to monitor process parameters and attain energy outputs for each process.
3

Spot Welding of Advanced High Strength Steels (AHSS)

Khan, Mohammad Ibraheem 20 April 2007 (has links)
Efforts to reduce vehicle weight and improve crash performance have resulted in increased application of advanced high strength steels (AHSS) and a recent focus on the weldability of these alloys. Resistance spot welding (RSW) is the primary sheet metal welding process in the manufacture of automotive assemblies. Integration of AHSS into the automotive architecture has brought renewed challenges for achieving acceptable welds. The varying alloying content and processing techniques has further complicated this initiative. The current study examines resistance spot welding of high strength and advance high strength steels including high strength low alloy (HSLA), dual phase (DP) and a ferritic-bainitic steel (590R). The mechanical properties and microstructure of these RSW welded steel alloys are detailed. Furthermore a relationship between chemistries and hardness is produced. The effect of strain rate on the joint strength and failure mode is also an important consideration in the design of welded structures. Current literature, however, does not explain the effects of weld microstructure and there are no comprehensive comparisons of steels. This work details the relationship between the joint microstructure and impact performance of spot welded AHSS. Quasi-static and impact tests were conducted using a universal tensile tester and an instrumented drop tower, respectively. Results for elongation, failure load and energy absorption for each material are presented. Failure modes are detailed by observing weld fracture surfaces. In addition, cross-sections of partially fractured weldments were examined to detail fracture paths during static loading. Correlations between the fracture path and mechanical properties are developed using observed microstructures in the fusion zone and heat-affected-zone. Friction stir spot welding (FSSW) has proven to be a potential candidate for spot welding AHSS. A comparative study of RSW and FSSW on spot welding AHSS has also been completed. The objective of this work is to compare the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds conducted using both processes. This was accomplished by examining the metallurgical cross-sections and local hardnesses of various spot weld regions. High speed data acquisition was also used to monitor process parameters and attain energy outputs for each process.

Page generated in 0.0899 seconds