• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Fine-scale Niobium Carbonitride Precipitates on Hydrogen-Induced Cracking of X70 Pipeline Steel

Wojnas, Caroline Theresa January 2021 (has links)
The microstructure of steel is well known to affect hydrogen-induced cracking (HIC) susceptibility by having certain heterogeneities serving as effective hydrogen trap sites. A consensus on whether or not fine-scale niobium carbide (NbC), nitride (NbN) and carbonitride (Nb(C,N)) precipitates can behave as effective hydrogen traps has yet to be established. The H-trapping capacity of Nb precipitates in a Fe-C-Mn-Nb model steel was investigated with the goal of minimizing embrittlement effects and improving the design of X70 pipeline grade steel for sour service oil and gas applications. First, a heat treatment was applied to the model steel to change the Nb-based precipitate size distribution, which was subsequently characterized via transmission electron microscopy, electron energy loss spectroscopy, and atom probe tomography. The experimental heat treatment increased the number of fine-scale precipitates (<15 nm) that are ideal for APT characterization. NbN and NbC precipitates of various stoichiometries were confirmed within the steel. Further, a custom electrolytic H-charging device was designed, fabricated, and validated using thermal desorption spectroscopy. Additionally, the extent of galvanic corrosion between NbC and NbN and the steel matrix was determined using custom scaled-up particle matrix specimens. Potentiodynamic polarizations conducted using active and passivating electrolytes revealed the relative nobility of the materials. Both NbC and NbN particles were more noble than the steel matrix; thus, possessing driving force for galvanic corrosion, with the particles serving as cathodes. Future studies involving electrolytic charging of the steel in a D-based electrolyte coupled with atom probe tomography will facilitate the direct observation of H-trapping sites relative to various Nb-based precipitates and contribute to an improved understanding of the mechanisms governing HIC. / Thesis / Master of Science in Materials Science and Engineering (MSMSE)
2

Spot Welding of Advanced High Strength Steels (AHSS)

Khan, Mohammad Ibraheem 20 April 2007 (has links)
Efforts to reduce vehicle weight and improve crash performance have resulted in increased application of advanced high strength steels (AHSS) and a recent focus on the weldability of these alloys. Resistance spot welding (RSW) is the primary sheet metal welding process in the manufacture of automotive assemblies. Integration of AHSS into the automotive architecture has brought renewed challenges for achieving acceptable welds. The varying alloying content and processing techniques has further complicated this initiative. The current study examines resistance spot welding of high strength and advance high strength steels including high strength low alloy (HSLA), dual phase (DP) and a ferritic-bainitic steel (590R). The mechanical properties and microstructure of these RSW welded steel alloys are detailed. Furthermore a relationship between chemistries and hardness is produced. The effect of strain rate on the joint strength and failure mode is also an important consideration in the design of welded structures. Current literature, however, does not explain the effects of weld microstructure and there are no comprehensive comparisons of steels. This work details the relationship between the joint microstructure and impact performance of spot welded AHSS. Quasi-static and impact tests were conducted using a universal tensile tester and an instrumented drop tower, respectively. Results for elongation, failure load and energy absorption for each material are presented. Failure modes are detailed by observing weld fracture surfaces. In addition, cross-sections of partially fractured weldments were examined to detail fracture paths during static loading. Correlations between the fracture path and mechanical properties are developed using observed microstructures in the fusion zone and heat-affected-zone. Friction stir spot welding (FSSW) has proven to be a potential candidate for spot welding AHSS. A comparative study of RSW and FSSW on spot welding AHSS has also been completed. The objective of this work is to compare the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds conducted using both processes. This was accomplished by examining the metallurgical cross-sections and local hardnesses of various spot weld regions. High speed data acquisition was also used to monitor process parameters and attain energy outputs for each process.
3

Spot Welding of Advanced High Strength Steels (AHSS)

Khan, Mohammad Ibraheem 20 April 2007 (has links)
Efforts to reduce vehicle weight and improve crash performance have resulted in increased application of advanced high strength steels (AHSS) and a recent focus on the weldability of these alloys. Resistance spot welding (RSW) is the primary sheet metal welding process in the manufacture of automotive assemblies. Integration of AHSS into the automotive architecture has brought renewed challenges for achieving acceptable welds. The varying alloying content and processing techniques has further complicated this initiative. The current study examines resistance spot welding of high strength and advance high strength steels including high strength low alloy (HSLA), dual phase (DP) and a ferritic-bainitic steel (590R). The mechanical properties and microstructure of these RSW welded steel alloys are detailed. Furthermore a relationship between chemistries and hardness is produced. The effect of strain rate on the joint strength and failure mode is also an important consideration in the design of welded structures. Current literature, however, does not explain the effects of weld microstructure and there are no comprehensive comparisons of steels. This work details the relationship between the joint microstructure and impact performance of spot welded AHSS. Quasi-static and impact tests were conducted using a universal tensile tester and an instrumented drop tower, respectively. Results for elongation, failure load and energy absorption for each material are presented. Failure modes are detailed by observing weld fracture surfaces. In addition, cross-sections of partially fractured weldments were examined to detail fracture paths during static loading. Correlations between the fracture path and mechanical properties are developed using observed microstructures in the fusion zone and heat-affected-zone. Friction stir spot welding (FSSW) has proven to be a potential candidate for spot welding AHSS. A comparative study of RSW and FSSW on spot welding AHSS has also been completed. The objective of this work is to compare the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds conducted using both processes. This was accomplished by examining the metallurgical cross-sections and local hardnesses of various spot weld regions. High speed data acquisition was also used to monitor process parameters and attain energy outputs for each process.

Page generated in 0.1026 seconds