Spelling suggestions: "subject:"hydrogeninduced cracking (HIC)"" "subject:"estrogeninduced cracking (HIC)""
1 |
Zur Wasserstoff-induzierten Riss- und Blisterbildung in Eisen / On Hydrogen-Induced Cracking and Blistering in IronTiegel, Marie Christine 20 January 2017 (has links)
Wasserstoff-induzierte Schäden sind ein verbreitetes Problem in verschiedenen Anwendungen von Metallen. In dieser Arbeit wurde Wasserstoff-induzierte Rissbildung in Eisen untersucht. Die Proben wurden elektrochemisch mit Wasserstoff beladen. Diese Beladung führt zu Rissen in den Eisenproben und Blistern auf deren Oberfläche, wenn Risse oberflächennah lokalisiert sind.
Als Triebkraft der Rissbildung wurde der hohe Wasserstoffdruck in den Rissen gefolgert. Dieser Druck wurde durch eine Kombination aus Ausgasexperimenten und Dichtemessungen bestimmt. Die Mikrostruktur, die Risse und Blister umgibt, wurde mit Elektronenmikroskopie untersucht. Dafür wurden Rissflächen durch Zugversuche freigelegt. Oxidische Einschlüsse konnten als Ausgangspunkt für Risse ausgemacht werden. Mit Transmissionselektronenmikroskopie wurden duktile Merkmale in der Nähe von Rissen sichtbar.
Ein Mechanismus für die Riss- und Blisterbildung wurde vorgeschlagen.
|
2 |
Influence of Fine-scale Niobium Carbonitride Precipitates on Hydrogen-Induced Cracking of X70 Pipeline SteelWojnas, Caroline Theresa January 2021 (has links)
The microstructure of steel is well known to affect hydrogen-induced cracking (HIC) susceptibility by having certain heterogeneities serving as effective hydrogen trap sites. A consensus on whether or not fine-scale niobium carbide (NbC), nitride (NbN) and carbonitride (Nb(C,N)) precipitates can behave as effective hydrogen traps has yet to be established. The H-trapping capacity of Nb precipitates in a Fe-C-Mn-Nb model steel was investigated with the goal of minimizing embrittlement effects and improving the design of X70 pipeline grade steel for sour service oil and gas applications. First, a heat treatment was applied to the model steel to change the Nb-based precipitate size distribution, which was subsequently characterized via transmission electron microscopy, electron energy loss spectroscopy, and atom probe tomography. The experimental heat treatment increased the number of fine-scale precipitates (<15 nm) that are ideal for APT characterization. NbN and NbC precipitates of various stoichiometries were confirmed within the steel. Further, a custom electrolytic H-charging device was designed, fabricated, and validated using thermal desorption spectroscopy. Additionally, the extent of galvanic corrosion between NbC and NbN and the steel matrix was determined using custom scaled-up particle matrix specimens. Potentiodynamic polarizations conducted using active and passivating electrolytes revealed the relative nobility of the materials. Both NbC and NbN particles were more noble than the steel matrix; thus, possessing driving force for galvanic corrosion, with the particles serving as cathodes. Future studies involving electrolytic charging of the steel in a D-based electrolyte coupled with atom probe tomography will facilitate the direct observation of H-trapping sites relative to various Nb-based precipitates and contribute to an improved understanding of the mechanisms governing HIC. / Thesis / Master of Science in Materials Science and Engineering (MSMSE)
|
Page generated in 0.0723 seconds