• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 97
  • 20
  • 13
  • 12
  • 11
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 307
  • 82
  • 48
  • 45
  • 39
  • 35
  • 29
  • 29
  • 29
  • 27
  • 26
  • 26
  • 25
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Off-gas Nitrous Oxide monitoring for nitrification aeration control

Sivret, Eric Claude, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Effective control of nitrification processes employed at municipal wastewater treatment plants is essential for maintaining process reliability and minimizing environmental impacts and operating costs. While a range of process control strategies are available, they share a dependence on invasive liquid phase monitoring and are based on a periphery understanding of the metabolic status of the processes being controlled. Utilization of off-gas nitrous oxide (N2O) monitoring as a real-time indicator of the process metabolic status is a novel process control concept with the potential to address these concerns. This thesis details the development and evaluation of an off-gas N2O stress response based control technique. Examination of the stress response relationship demonstrated that it met the majority of the criteria of interest for process control. A simple feedback aeration control strategy was developed and evaluated through process simulation to determine the feasibility of implementation, cost effectiveness and associated environmental benefits. The off-gas N2O based control strategy provided better matching between aeration supply and metabolic demand, allowing the process to be maintained at the desired operating setpoints and avert nitrification failure. Performance was demonstrated to be similar to dissolved oxygen based feedback aeration control, although slightly more efficient at reduced dissolved oxygen concentrations. A technical, economic and environmental evaluation indicated that aeration control based on non-invasive off-gas N2O monitoring is technically feasible and has the potential to offer significant environmental and economic benefits including reductions in operating costs and process capital investment, as well as improved effluent compliance and reductions in emissions of gaseous pollutants including greenhouse gases. Overall, while off-gas N2O monitoring based aeration control techniques have the potential to provide significant economic and environmental benefits, a number of research questions remain to be answered. Future work in the form of long-term field trials is required to address these issues and allow quantification of economic and environmental benefits.
32

Dynamic mathematical model of oxygen and carbon dioxide exchange between soil and atmosphere

Ou-yang, Ying 27 September 1990 (has links)
Gaseous transport through soil in the presence of soil microorganisms has been investigated. More recently, modeling of gaseous transport in the unsaturated zone has been investigated. However, the problem of mathematical model of oxygen and carbon dioxide transport through soil, as affected by the climatic conditions, the transport of soil water, and the biological activities, has not been studied. The problem of time-dependent diffusion of oxygen and carbon dioxide through plant canopy and soil system, as affected by the infiltration and evaporation of soil water and the rate of consumption of oxygen and production of carbon dioxide by plant leaves and roots and soil microorganisms was studied, using a one-dimensional mathematical model. This model consists of four sets of non-linear partial differential field equations, which describe the time-dependent simultaneous transport of water, heat, oxygen, and carbon dioxide through the soils. Finite difference methods were used to find the approximate solutions for the four sets of non-linear partial differential field equations. The field equations for the transport of water and heat were approximated by using the implicit scheme. The field equations for the transport of oxygen and carbon dioxide were approximated by using the explicit scheme. A computer program was written in Fortran code to conduct the simulations of the mathematical model. Simultaneous transport of water, heat, oxygen, and carbon dioxide through the unsaturated Indio loam soil, through the compacted and the non-compacted soil during infiltration, redistribution, and evaporation of soil water was evaluated. Diffusion of oxygen and carbon dioxide within the canopy and soil system was examined. Several different functions for the root elongation and the root oxygen consumption rates were used. Root elongation rate was chosen to depend on oxygen or carbon dioxide concentrations, in addition to being a function of time. Root oxygen consumption rate was assumed to be a function of root age, in addition to being a function of oxygen or carbon dioxide concentrations. Results illustrate that the behaviors of the simultaneous transport of water, heat, oxygen, and carbon dioxide were well predicted by the model. / Graduation date: 1991
33

Analysis of design factors influencing the oxygen transfer efficiency of a Speece Cone hypolimnetic aerator

Kowsari, Assieh 11 1900 (has links)
The objective of this research was to characterize the performance of a downflow bubblecontact (DBCA) hypolimnetic aerator — Speece Cone-. The effect of two key design factors, inlet water velocity and the ratio of gas flow rate to water flow rate on four standard units of measure was examined: (a) the Oxygen Transfer Coefficient, KLa, corrected to 20°C, KLa₂₀ (hr­-¹), (b) the Standard Oxygen Transfer Rate, SOTR (g0₂.hr­-¹) (c) the Standard Aeration Efficiency, SAE (gO₂kWhr­-¹), and (d) the Standard Oxygen Transfer Efficiency, SOTE (%). Two sources of oxygen, Pressure Swing Adsorption (PSA) oxygen (87% purity) and air, were compared. KLa₂₀, SOTR, and SAE increased with an increase in the ratio of gas flow rate to water flow rate for both air and oxygen, over a range of 0.5% to 5.0%; while SAE deceased. An increase in inlet water velocity resulted in a decrease in KLa, corrected to 20°C, SOTR, and SAE, but an increase in the SOTE. Treatments on air showed similar, but much less dramatic effect of the gas flow rate to water flow rate ratio and water inlet velocity on KLa₂₀, SOTE, SAE, and SOTE, when compared to treatments on PSA oxygen. The best performance was achieved with an inlet water velocity of 6.9-7.6 ms­-¹ and oxygen flow rate to water flow rate ratio of about 2.5%. At this combination, the SOTE was about 66-72%.
34

Alternative Methods for Evaluation of Oxygen Transfer Performance in Clean Water / Alternativa metoder för utvärdering av syreöverföringsprestanda i rent vatten

Fändriks, Ingrid January 2011 (has links)
Aeration of wastewater is performed in many wastewater treatment plants to supply oxygen to microorganisms. To evaluate the performance of a single aerator or an aeration system, there is a standard method for oxygen transfer measurements in clean water used today. The method includes a model that describes the aeration process and the model parameters could be estimated using nonlinear regression. The model is a simplified description of the oxygen transfer which could possibly result in performance results that are not accurate. That is why many have tried to describe the aeration at other ways and with other parameters. The focus of this Master Thesis has been to develop alternative models which better describe the aeration that could result in more accurate performance results. Data for model evaluations have been measured in two different tanks with various numbers of aerators. Five alternative methods containing new models for oxygen transfer evaluation have been studied in this thesis. The model in method nr 1 assumes that the oxygen transfer is different depending on where in a tank the dissolved oxygen concentration is measured. It is assumed to be faster in a water volume containing air bubbles. The size of the water volumes and the mixing between them can be described as model parameters and also estimated. The model was evaluated with measured data from the two different aeration systems where the water mixing was relatively big which resulted in that the model assumed that the whole water volume contained air bubbles. After evaluating the results, the model was considered to maybe be useful for aeration systems where the mixing of the water volumes was relatively small in comparison to the total water volume. However, the method should be further studied to evaluate its usability. Method nr 2 contained a model with two separate model parameter, one for the oxygen transfer for the air bubbles and one for the oxygen transfer at the water surface. The model appeared to be sensitive for which initial guesses that was used for the estimated parameters and it was assumed to reduce the model’s usability. Model nr 3 considered that the dissolved oxygen equilibrium concentration in water is depth dependent and was assumed to increase with increasing water depth. Also this model assumed that the oxygen was transferred from both the air bubbles and at the water surface. The model was considered to be useful but further investigations about whether the saturation concentrations should be constant or vary with water depth should be performed. The other two methods contained models that were combinations of the previous mentioned model approaches but was considered to not be useful.
35

Aeration and mode of nutrient delivery affects growth of peas in a controlled environment

Romagnano, Joseph F. January 2004 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: advanced life support; ethylene; carbon dioxide; pisum sativum; root hypoxia; oxygen; bioregenerative life support. Includes bibliographical references (p. 53-57).
36

Development and testing of a portable air permeater for measuring compacted surfaces

Gale, Robert David, 1941- January 1969 (has links)
No description available.
37

Oxygenation in column reactor sewage treatment

Neleigh, James Edward, 1945- January 1973 (has links)
No description available.
38

Analysis of design factors influencing the oxygen transfer efficiency of a Speece Cone hypolimnetic aerator

Kowsari, Assieh 11 1900 (has links)
The objective of this research was to characterize the performance of a downflow bubblecontact (DBCA) hypolimnetic aerator — Speece Cone-. The effect of two key design factors, inlet water velocity and the ratio of gas flow rate to water flow rate on four standard units of measure was examined: (a) the Oxygen Transfer Coefficient, KLa, corrected to 20°C, KLa₂₀ (hr­-¹), (b) the Standard Oxygen Transfer Rate, SOTR (g0₂.hr­-¹) (c) the Standard Aeration Efficiency, SAE (gO₂kWhr­-¹), and (d) the Standard Oxygen Transfer Efficiency, SOTE (%). Two sources of oxygen, Pressure Swing Adsorption (PSA) oxygen (87% purity) and air, were compared. KLa₂₀, SOTR, and SAE increased with an increase in the ratio of gas flow rate to water flow rate for both air and oxygen, over a range of 0.5% to 5.0%; while SAE deceased. An increase in inlet water velocity resulted in a decrease in KLa, corrected to 20°C, SOTR, and SAE, but an increase in the SOTE. Treatments on air showed similar, but much less dramatic effect of the gas flow rate to water flow rate ratio and water inlet velocity on KLa₂₀, SOTE, SAE, and SOTE, when compared to treatments on PSA oxygen. The best performance was achieved with an inlet water velocity of 6.9-7.6 ms­-¹ and oxygen flow rate to water flow rate ratio of about 2.5%. At this combination, the SOTE was about 66-72%.
39

Effect of aeration on the characteristics of soil phosphorus in selected Quebec and Malayan soils.

Thong, Jim K. C. January 1967 (has links)
No description available.
40

Evaluation of parameters influencing oxygen transfer efficiency in a membrane bioreactor

Hu, Jing January 2006 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2006. / Includes bibliographical references (leaves 96-99). / xiii, 99 leaves, bound ill. (some col.) 29 cm

Page generated in 0.1076 seconds