• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'une méthode de mesure basée image pour caractériser en grande taille les flux d'air intérieurs / Development of an image-based measurement method to characterize in large size indoor airflows

Schuster, Romain 14 June 2019 (has links)
Les flux d'air intérieurs, d'origine naturelle ou mécanique, participent de manière significative au transport de particules et aux transferts thermiques au sein des bâtiments. Que ce soit pour des raisons de santé et sécurité au travail, de confort thermique ou encore d'économie d'énergie, il est crucial de pouvoir les étudier sur place pour mieux les maîtriser. L'objectif de cette thèse aura été de développer une méthode permettant de mesurer sur site, la vitesse de flux d'air intérieurs sur de grands domaines d'observation (supérieurs au mètre carré). Pour cela, nous nous sommes tournés vers les techniques basées images qui consistent à suivre le mouvement de traceurs passifs introduits dans l'air pour en déduire une estimation de sa vitesse. Ce type de méthode est déjà largement utilisé en laboratoire de recherche pour étudier les écoulements dans des contextes bien maîtrisés. Cependant, le passage à la mesure sur le terrain et à l'observation grand champ nécessitent quelques adaptations. Ces adaptations concernent notamment le choix de nouveaux traceurs, l'éclairage ainsi que la méthode d'estimation de mouvement à partir de séquences d'images. Dans un premier temps, nous avons développé un algorithme d'estimation de mouvement permettant l'estimation de la vitesse aux grandes échelles à partir d'images de particules et d'images de scalaire. Nous avons ensuite éprouvé en soufflerie, sur des écoulements de couche de mélange et de sillage de cylindre, une méthode de mesure basée image grand champ n'utilisant qu'une seule caméra, un éclairage LED, des traceurs de type bulles ou fumée ainsi que l'algorithme évoqué plus haut. Nous avons confronté la mesure obtenue à une mesure réalisée par anémométrie à fil chaud. Les résultats de cette campagne de mesure ont montré la capacité de la méthode à mesurer les principales caractéristiques des écoulements considérés. Enfin, nous avons appliqué la méthode développée à une mesure sur site du flux d'aspiration d'une sorbonne de laboratoire en conditions réelles de fonctionnement. Cette mesure a permis de mettre en évidence des zones de forte turbulence et de recirculation, sources de fuites potentielles. / Whether for reasons of health and safety at work, thermal comfort or energy saving, it is crucial to study them on site to better control them. The objective of this thesis was to develop a method to measure on site, the speed of indoor air flows over large areas of observation (greater than a square meter). To this end, we turned to image-based techniques that consist in following the movement of passive tracers introduced into the air to infer an estimate of its velocity. This kind of method is already widely used in research laboratories to study flows in well-controlled contexts. However, the transition to on-site measurement and wide field of interest requires some adaptations. These adaptations concern, in particular, the choice of new tracers, the lighting system as well as the motion estimation method from image sequences. First, we developed a motion estimation algorithm that allows the estimation of large-scale velocities from particle images and scalar images. We then tested in our wind tunnel, on mixing layer and cylinder wake flows, a large-scale image-based measurement method using only one camera, a LED lighting system, bubbles or smoke tracers as well as the algorithm mentioned above. We compared the obtained measurement with a measurement carried out by hot-wire anemometry. The results of this measurement campaign showed the ability of the method to measure the main characteristics of the considered flows. Finally, we applied the developed method to an on-site measurement of the suction flow of a laboratory fume hood under real operating conditions. This measure has made it possible to highlight areas of high turbulence and recirculation, causing potential leakages.
2

High performance lattice Boltzmann solvers on massively parallel architectures with applications to building aeraulics / Implantations hautes performances de la méthode de Boltzmann sur gaz réseau. Applications à l'aéraulique des bâtiments

Obrecht, Christian 11 December 2012 (has links)
Avec l'émergence des bâtiments à haute efficacité énergétique, il est devenu indispensable de pouvoir prédire de manière fiable le comportement énergétique des bâtiments. Or, à l'heure actuelle, la prise en compte des effets thermo-aérauliques dans les modèles se cantonne le plus souvent à l'utilisation d'approches simplifiées voire empiriques qui ne sauraient atteindre la précision requise. Le recours à la simulation numérique des écoulements semble donc incontournable, mais il est limité par un coût calculatoire généralement prohibitif. L'utilisation conjointe d'approches innovantes telle que la méthode de Boltzmann sur gaz réseau (LBM) et d'outils de calcul massivement parallèles comme les processeurs graphiques (GPU) pourrait permettre de s'affranchir de ces limites. Le présent travail de recherche s'attache à en explorer les potentialités. La méthode de Boltzmann sur gaz réseau, qui repose sur une forme discrétisée de l'équation de Boltzmann, est une approche explicite qui jouit de nombreuses qualités : précision, stabilité, prise en compte de géométries complexes, etc. Elle constitue donc une alternative intéressante à la résolution directe des équations de Navier-Stokes par une méthode numérique classique. De par ses caractéristiques algorithmiques, elle se révèle bien adaptée au calcul parallèle. L'utilisation de processeurs graphiques pour mener des calculs généralistes est de plus en plus répandue dans le domaine du calcul intensif. Ces processeurs à l'architecture massivement parallèle offrent des performances inégalées à ce jour pour un coût relativement modéré. Néanmoins, nombre de contraintes matérielles en rendent la programmation complexe et les gains en termes de performances dépendent fortement de la nature de l'algorithme considéré. Dans le cas de la LBM, les implantations GPU affichent couramment des performances supérieures de deux ordres de grandeur à celle d'une implantation CPU séquentielle faiblement optimisée. Le mémoire de thèse présenté est constitué d'un ensemble de neuf articles de revues internationales et d'actes de conférences internationales (le dernier étant en cours d'évaluation). Dans ces travaux sont abordés les problématiques liées tant à l'implantation mono-GPU de la LBM et à l'optimisation des accès en mémoire, qu'aux implantations multi-GPU et à la modélisation des communications inter-GPU et inter-nœuds. En complément, sont détaillées diverses extensions à la LBM indispensables pour envisager une utilisation en thermo-aéraulique des bâtiments. Les cas d'études utilisés pour la validation des codes permettent de juger du fort potentiel de cette approche en pratique. / With the advent of low-energy buildings, the need for accurate building performance simulations has significantly increased. However, for the time being, the thermo-aeraulic effects are often taken into account through simplified or even empirical models, which fail to provide the expected accuracy. Resorting to computational fluid dynamics seems therefore unavoidable, but the required computational effort is in general prohibitive. The joint use of innovative approaches such as the lattice Boltzmann method (LBM) and massively parallel computing devices such as graphics processing units (GPUs) could help to overcome these limits. The present research work is devoted to explore the potential of such a strategy. The lattice Boltzmann method, which is based on a discretised version of the Boltzmann equation, is an explicit approach offering numerous attractive features: accuracy, stability, ability to handle complex geometries, etc. It is therefore an interesting alternative to the direct solving of the Navier-Stokes equations using classic numerical analysis. From an algorithmic standpoint, the LBM is well-suited for parallel implementations. The use of graphics processors to perform general purpose computations is increasingly widespread in high performance computing. These massively parallel circuits provide up to now unrivalled performance at a rather moderate cost. Yet, due to numerous hardware induced constraints, GPU programming is quite complex and the possible benefits in performance depend strongly on the algorithmic nature of the targeted application. For LBM, GPU implementations currently provide performance two orders of magnitude higher than a weakly optimised sequential CPU implementation. The present thesis consists of a collection of nine articles published in international journals and proceedings of international conferences (the last one being under review). These contributions address the issues related to single-GPU implementations of the LBM and the optimisation of memory accesses, as well as multi-GPU implementations and the modelling of inter-GPU and internode communication. In addition, we outline several extensions to the LBM, which appear essential to perform actual building thermo-aeraulic simulations. The test cases we used to validate our codes account for the strong potential of GPU LBM solvers in practice.
3

High performance lattice Boltzmann solvers on massively parallel architectures with applications to building aeraulics

Obrecht, Christian 11 December 2012 (has links) (PDF)
With the advent of low-energy buildings, the need for accurate building performance simulations has significantly increased. However, for the time being, the thermo-aeraulic effects are often taken into account through simplified or even empirical models, which fail to provide the expected accuracy. Resorting to computational fluid dynamics seems therefore unavoidable, but the required computational effort is in general prohibitive. The joint use of innovative approaches such as the lattice Boltzmann method (LBM) and massively parallel computing devices such as graphics processing units (GPUs) could help to overcome these limits. The present research work is devoted to explore the potential of such a strategy. The lattice Boltzmann method, which is based on a discretised version of the Boltzmann equation, is an explicit approach offering numerous attractive features: accuracy, stability, ability to handle complex geometries, etc. It is therefore an interesting alternative to the direct solving of the Navier-Stokes equations using classic numerical analysis. From an algorithmic standpoint, the LBM is well-suited for parallel implementations. The use of graphics processors to perform general purpose computations is increasingly widespread in high performance computing. These massively parallel circuits provide up to now unrivalled performance at a rather moderate cost. Yet, due to numerous hardware induced constraints, GPU programming is quite complex and the possible benefits in performance depend strongly on the algorithmic nature of the targeted application. For LBM, GPU implementations currently provide performance two orders of magnitude higher than a weakly optimised sequential CPU implementation. The present thesis consists of a collection of nine articles published in international journals and proceedings of international conferences (the last one being under review). These contributions address the issues related to single-GPU implementations of the LBM and the optimisation of memory accesses, as well as multi-GPU implementations and the modelling of inter-GPU and internode communication. In addition, we outline several extensions to the LBM, which appear essential to perform actual building thermo-aeraulic simulations. The test cases we used to validate our codes account for the strong potential of GPU LBM solvers in practice.

Page generated in 0.0312 seconds