Spelling suggestions: "subject:"periferial ransportation"" "subject:"periferial atransportation""
1 |
Modelo de previsão de posição de aeronaves para uso em sistemas de vigilância do espaço aéreo. / Aircrafts position forecast model to use in surveillance systems of aerial space.Navarrete, Mauricio de Castro 27 July 2006 (has links)
Esta pesquisa apresenta uma contribuição para a avaliação do problema de previsão de posição futura de aeronaves dentro da aviação brasileira. O uso dessas previsões é muito importante para os sistemas de vigilância do espaço aéreo, sobretudo para a detecção de conflitos entre aeronaves. O problema é estudado para vôos em rota, considerando previsões de posição para instantes de 1 a 20 minutos. Primeiramente, o problema é apresentado, de forma que fique claro o contexto de sua aplicação dentro dos sistemas automatizados para a gestão do tráfego aéreo. Em seguida, são mostrados os métodos matemáticos necessários para o estudo da previsão de posição futura de aeronaves em rota. O modelo proposto para se realizar a previsão utiliza a regressão linear das posições conhecidas da aeronave, extrapolando suas possíveis posições futuras. As condições de um vôo em rota permitem a utilização deste método. Os resultados obtidos são comparados com as informações de posições reais das aeronaves, permitindo avaliar a qualidade das posições estimadas. Por fim, são apresentadas formas de se aplicar o modelo proposto dentro de sistemas computacionais utilizados para a previsão de posição futura de aeronaves, permitindo que os sistemas de vigilância do espaço aéreo façam uso das previsões. / This research presents a contribution to the evaluation of the predicting aircraft future positions problem considering the Brazilian airspace. These predictions are very important for airspace surveillance systems, mainly to the detection of conflict among aircraft. The problem is studied for en route flights, considering position predictions from 1 to 20 minutes. Firstly, the problem is proposed, so that its application context to air traffic management automation can be clear. Then, the necessary mathematical methods used to study en route aircraft future position prediction are shown. The proposed model employed to find the predictions makes use of linear regression of known aircraft positions, extrapolating its future positions. En route flight conditions permit this approach. Prediction results are then compared with real aircraft positions, so that position estimates quality can be evaluated. Finally, ways of practical application of the proposed model inside computational systems used for aircraft future position prediction are presented. This allows surveillance airspace systems to make use of the predictions.
|
2 |
Decentralized control of multi-agent aerial transportation systemToumi, Noureddine 04 1900 (has links)
Autonomous aerial transportation has multiple potential applications including emergency cases and rescue missions where ground intervention may be difficult. In this context, the following work will address the control of multi-agent Vertical Take-off
and Landing aircraft (VTOL) transportation system. We develop a decentralized method. The advantage of such a solution is that it can provide better maneuverability and lifting capabilities compared to existing systems. First, we consider a cooperative group of VTOLs transporting one payload. The main idea is that each agent perceive the interaction with other agents as a disturbance while assuming a negotiated motion model and imposing certain magnitude bounds on each agent. The theoretical model will be then validated using a numerical simulation illustrating the interesting features of the presented control method. Results show that under specified disturbances, the algorithm is able to guarantee the tracking with a minimal error. We describe a toolbox that has been developed for this purpose. Then, a system of multiple VTOLs lifting payloads will be studied. The algorithm assures that the VTOLs are coordinated with minimal communication. Additionally, a novel gripper design for ferrous objects is presented that enables the transportation of ferrous objects without a cable. Finally, we discuss potential connections to human in the loop transportation systems.
|
3 |
Modelo de previsão de posição de aeronaves para uso em sistemas de vigilância do espaço aéreo. / Aircrafts position forecast model to use in surveillance systems of aerial space.Mauricio de Castro Navarrete 27 July 2006 (has links)
Esta pesquisa apresenta uma contribuição para a avaliação do problema de previsão de posição futura de aeronaves dentro da aviação brasileira. O uso dessas previsões é muito importante para os sistemas de vigilância do espaço aéreo, sobretudo para a detecção de conflitos entre aeronaves. O problema é estudado para vôos em rota, considerando previsões de posição para instantes de 1 a 20 minutos. Primeiramente, o problema é apresentado, de forma que fique claro o contexto de sua aplicação dentro dos sistemas automatizados para a gestão do tráfego aéreo. Em seguida, são mostrados os métodos matemáticos necessários para o estudo da previsão de posição futura de aeronaves em rota. O modelo proposto para se realizar a previsão utiliza a regressão linear das posições conhecidas da aeronave, extrapolando suas possíveis posições futuras. As condições de um vôo em rota permitem a utilização deste método. Os resultados obtidos são comparados com as informações de posições reais das aeronaves, permitindo avaliar a qualidade das posições estimadas. Por fim, são apresentadas formas de se aplicar o modelo proposto dentro de sistemas computacionais utilizados para a previsão de posição futura de aeronaves, permitindo que os sistemas de vigilância do espaço aéreo façam uso das previsões. / This research presents a contribution to the evaluation of the predicting aircraft future positions problem considering the Brazilian airspace. These predictions are very important for airspace surveillance systems, mainly to the detection of conflict among aircraft. The problem is studied for en route flights, considering position predictions from 1 to 20 minutes. Firstly, the problem is proposed, so that its application context to air traffic management automation can be clear. Then, the necessary mathematical methods used to study en route aircraft future position prediction are shown. The proposed model employed to find the predictions makes use of linear regression of known aircraft positions, extrapolating its future positions. En route flight conditions permit this approach. Prediction results are then compared with real aircraft positions, so that position estimates quality can be evaluated. Finally, ways of practical application of the proposed model inside computational systems used for aircraft future position prediction are presented. This allows surveillance airspace systems to make use of the predictions.
|
4 |
Safety-critical Geometric Control Design with Application to Aerial TransportationWu, Guofan 01 December 2017 (has links)
Safety constraints are ubiquitous in many robotic applications. For instance, aerial robots such as quadrotors or hexcoptors need to realize fast collision-free flight, and bipedal robots have to choose their discrete footholds properly to gain the desired friction and pressure contact forces. In this thesis, we address the safety critical control problem for fully-actuated and under-actuated mechanical systems. Since many mechanical systems evolve on nonlinear manifolds, we extend the concept of Control Barrier Function to a new concept called geometric Control Barrier Function which is specifically designed to handle safety constraints on manifolds. This type of Control Barrier Function stems from geometric control techniques and has a coordinate free and compact representation. In a similar fashion, we also extend the concept of Control Lyapunov Function to the concept of geometric Control Lyapunov Function to realize tracking on the manifolds. Based on these new geometric versions of CLF and CBF, we propose a general control design method for fully-actuated systems with both state and input constraints. In this CBF-CLF-QP control design, the control input is computed based on a state-dependent Quadratic Programming (QP) where the safety constraints are strictly enforced using geometric CBF but the tracking constraint is imposed through a type of relaxation. Through this type of relaxation, the controller could still keep the system state safe even in the cases when the reference is unsafe during some time period. For a single quadrotor, we propose the concept of augmented Control Barrier Function specifically to let it avoid external obstacles. Using this augmented CBF, we could still utilize the idea of CBF-CLF-QP controller in a sequential QP control design framework to let this quadrotor remain safe during the flight. In meantime, we also apply the geometric control techniques to the aerial transportation problem where a payload is carried by multiple quadrotors through cable suspension. This type of transportation method allows multiple quadrotors to share the payload weight, but introduces internal safety constraints at the same time. By employing both linear and nonlinear techniques, we are able to carry the payload pose to follow a pre-defined reference trajectory.
|
Page generated in 0.1059 seconds