• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 15
  • 15
  • 12
  • 12
  • 12
  • 12
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Influence of vane sweep on rotor-stator interaction noise.

Envia, Edmane. January 1988 (has links)
In this dissertation the influence of vane sweep on rotor-stator interaction noise is investigated. In an analytical approach, the interaction of a convected gust, representing the rotor viscous wake, with a cascade of finite span swept airfoils, representing the stator, is analyzed. The analysis is based on the solution of the exact linearized equations of motion. High-frequency convected gusts for which noise generation is concentrated near the leading edge of the airfoils are considered. In a preliminary study, the problem of an isolated finite span swept airfoil interacting with a convected gust is analyzed. Using Fourier transform methods and the Wiener-Hopf technique, an approximate solution for this problem is developed. Closed form expressions for the acoustic farfield are obtained and used in a parametric study to assess the effect of airfoil sweep on noise generation. Results indicate that sweep can substantially reduce the farfield noise levels for a single airfoil. Utilizing the single airfoil model, an approximate solution to the problem of noise radiation from a cascade of finite span swept airfoils interacting with a convected gust is derived. Only upstream radiated noise is considered. Neglecting the weak coupling between the adjacent leading edges at high frequencies, the cascade solution is constructed as a superposition of acoustic farfields emanating from an infinite number of isolated airfoils. A parametric study of noise generated by gust-cascade interaction is then carried out to assess the effectiveness of vane sweep in reducing rotor-stator interaction noise. The results of the parametric study show that, over a fairly wide range of conditions, sweep is beneficial in reducing noise levels. One conclusion of particular importance is that rotor wake twist or circumferential lean substantially influences the effectiveness of vane sweep. The orientation of the vane sweep must be chosen to enhance the natural phase lag caused by wake lean, in which case rather small sweep angles substantially reduce the noise levels.
42

Noise radiation from small steps and cubic roughness elements in turbulent boundary layer flow

Unknown Date (has links)
Ji and Wang (2010) propose that the dominant source of sound from a forward facing step is the stream wise dipole on the face of the step and that sources acting normal to the flow are negligible. Sound radiation normal to flow of forward facing steps has been measured in wind tunnel experiments previously by Farabee and Casarella (1986, 1991) and Catlett (2010). A method for evaluating sound radiation from surface roughness proposed in Glegg and Devenport (2009) has been adapted and applied to flow over a forward facing step which addresses the sound normal to the flow that was previously unaccounted for. Far-field radiation predictions based on this method have been compared with wind tunnel measurements and show good agreement. A second method which evaluates the forcing from a vortex convected past surface roughness using RANS calculations and potential flow information is also evaluated. / by Benjamin Skyler Bryan. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
43

Noise Radiation From A Cylindrical Embossment Immersed In Turbulent Boundary Layer Flow

Unknown Date (has links)
This dissertation will consider the sound radiation from forward-facing steps and a three dimensional cylindrical embossment of very low aspect ratio mounted on a plate. Glegg et al (2014) outlined a theory for predicting the sound radiation from separated flows and applied the method to predicting the sound from forward-facing steps. In order to validate this theory it has been applied to the results of Catlett et al (2014) and Ji and Wang (2010). This validation study revealed that the original theory could be adjusted to include a mixed scaling which gives a better prediction. RANS simulations have been performed and used to support the similarities between the forward-facing step and the cylindrical embossment. The simulations revealed that the cylindrical embossment exhibits a separation zone similar to that of the forward-facing step. This separation zone has been shown to be the dominant source of noise on the forward-facing step in previous works and therefore was expected to be the major source of sound from the cylindrical embossment. The sensitivity of this separation zone to the different parameters of the flow has been investigated by performing several simulations with different conditions and geometries. The separation zone was seen to be independent of Reynolds number based on boundary layer thickness but was directly dependent on the height of the cylinder. The theory outlined in Glegg et al (2014) was then reformulated for use with a cylindrical embossment and the predictions have been compared with wind tunnel measurements. The final predictions show good agreement with the wind tunnel measurements and the far-field sound shows a clearly defined directionality that is similar to an axial dipole at low frequencies. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
44

自動車のドアミラーから発生する空力音の計算

加藤, 由博, KATO, Yoshihiro, MEN'SHOV, Igor, 中村, 佳朗, NAKAMURA, Yoshiaki 15 September 2006 (has links)
No description available.
45

Characteristics of Sound Radiation from Turbulent Premixed Flames

Rajaram, Rajesh 08 November 2007 (has links)
Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f^2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)^2, which resembles the source term in the wave equation.
46

A numerical study of bluff body flow / submitted by Kwok Leung Lai.

Lai, Kwok Leung January 2000 (has links)
CD-ROM containing source codes of the numerical scheme (appendix A) is attached to back cover. / Includes bibliographical references (leaves 459-472). / System requirements for accompanying CD-ROM: Macintosh or IBM compatible computer. Other requirements: Adobe Acrobat Reader. / xxxvi, 473 leaves ; ill. ; 30 cm. + 1 computer optical disk (4 3/4 in.) / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / A numerical scheme, based on discrete-vortex and surface-vorticity boundary-integral methods, has been developed for stimulating time dependent, two-dimensional, viscous flow over arbitary arrays of solid bodies of arbitary cross-section / Thesis (Ph.D.)--Adelaide University, Dept. of Mechanical Engineering, 2001
47

I. A modified <kappa-epsilon> turbulence model for high speed jets at elevated temperatures. II. Modeling and a computational study of spliced acoustic liners

Ganesan, Anand. Tam, C. K. W. January 2005 (has links)
Thesis (Ph. D.)--Florida State University, 2005. / Advisor: Dr. Christopher K. W. Tam, Florida State University, College of Arts and Sciences, Dept. of Mathematics. Title and description from dissertation home page (viewed Sept. 21, 2005). Document formatted into pages; contains xv, 118 pages. Includes bibliographical references.
48

Numerical prediction of noise production and propagation / Prédiction numérique de la production et la propagation de bruit

Kapa, Lilla 16 October 2011 (has links)
Numerical simulation of noise production and propagation is a very complex problem. A methodology fitting for one particular problem can fail for another one. So there are no general guidelines on how to deal with such phenomena. In the present work, noise propagated in non-uniform mean-flow is considered. For most cases, in the propagation field, there is a rather significant region where the mean flow is not uniform, but the sound production is negligible compared to the noise emitted by the source region. In this<p>nearfield, a linear set of propagation equations may be considered (LEE). For such problems, the following simulation methodology is proposed:<p>1. Incompressible/compressible LES simulation in the source region.<p>2. Linearized Euler Equations to propagate the noise through the nonlinear mean flow.<p>3. Kirchhoff method in the farfield, if necessary.<p>This thesis deals with the second item of this system (LEE), including interfacing with the other two steps. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
49

Výpočtové modelování aerodynamického hluku způsobeného bočním zrcátkem automobilu / Computational modelling of aerodynamic noise caused by the car’s side mirror

Vobejda, Radek January 2019 (has links)
The master’sthesis deals with numerical modelling of aerodynamic noisewhich arisesinside of the carcabin. In the first part ofthe thesis simplified model of geometry of the car and of the inside acoustic pressure arecreated. After that numerical analysis of created models of geometry are doneandvarious models of turbulenceare discussed. The results of these CFD simulationswhere then used for changing the model of geometry of the wing mirror. Outputs of these simulations were used for solving the numerical analysis of noise in the car cabin.
50

Numerical Investigation of Airfoil Self-Noise Generation at Low Reynolds Number

Lyas, Tarik 09 December 2016 (has links)
In the advent of increasing the number of operable unmanned aerial systems (UAS) over the next years, a challenge exists in regard to the noise signature that these machines may generate. In this work, we perform advanced computational simulations to study the flow around an airfoil and the associated noise radiating to the near- and farield. The airfoil size and the freestream velocity are representative of a typical UAS. The study is aimed at investigating the characteristics of the aerodynamic noise radiating from an airfoil at various angles of attack, Reynolds number and Mach number. The numerical tool is a high-order compressible Navier-Stokes solver, using Runge-Kutta explicit time integration and dispersion-relation-preserving spatial discretization. Various results in terms of velocity and pressure distribution around the airfoil, and sound pressure level spectra calculated from different probe points located in the near- and farield are compared to each other and discussed.

Page generated in 0.0984 seconds