• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 48
  • 48
  • 13
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A comparison of flux-splitting algorithms for the Euler equations with equilibrium air chemistry

Garrett, Joseph Lee 08 September 2012 (has links)
The use of flux-splitting techniques on the Euler equations is considered for high Mach number, high temperature flows in which the fluid is assumed to be inviscid air in equilibrium. Three different versions of real gas extensions to the Steger-Warming and Van Leer flux-vector splitting, and four different versions of real gas extensions to the Roe flux-difference splitting, are compared with regard to general applicability and ease of implementation in existing perfect gas g algorithms. Test computations are performed for the M = 5, high temperature flow over a 10-degree wedge and the M = 24.5 flow over a blunt body. Although there were minor differences between the computed results for the three types of flux-splitting algorithms considered, little variation is observed between different versions of the same algorithm. / Master of Science
22

Variable-Fidelity Hypersonic Aeroelastic Analysis of Thin-Film Ballutes for Aerocapture

Rohrschneider, Reuben R. 09 April 2007 (has links)
Ballute hypersonic aerodynamic decelerators have been considered for aerocapture since the early 1980's. Recent technology advances in fabric and polymer materials as well as analysis capabilities lend credibility to the potential of ballute aerocapture. The concept of the thin-film ballute for aerocapture shows the potential for large mass savings over propulsive orbit insertion or rigid aeroshell aerocapture. Several technology hurdles have been identified, including the effects of coupled fluid structure interaction on ballute performance and survivability. To date, no aeroelastic solutions of thin-film ballutes in an environment relevant to aerocapture have been published. In this investigation, an aeroelastic solution methodology is presented along with the analysis codes selected for each discipline. Variable-fidelity aerodynamic tools are used due to the long run times for computational fluid dynamics or direct simulation Monte Carlo analyses. The improved serial staggered method is used to couple the disciplinary analyses in a time-accurate manner, and direct node-matching is used for data transfer. In addition, an engineering approximation has been developed as an addition to modified Newtonian analysis to include the first-order effects of damping due to the fluid, providing a rapid dynamic aeroelastic analysis suitable for conceptual design. Static aeroelastic solutions of a clamped ballute on a Titan aerocapture trajectory are presented using non-linear analysis in a representative environment on a flexible structure. Grid convergence is demonstrated for both structural and aerodynamic models used in this analysis. Static deformed shape, drag and stress level are predicted at multiple points along the representative Titan aerocapture trajectory. Results are presented for verification and validation cases of the structural dynamics and simplified aerodynamics tools. Solutions match experiment and other validated codes well. Contributions of this research include the development of a tool for aeroelastic analysis of thin-film ballutes which is used to compute the first high-fidelity aeroelastic solutions of thin-film ballutes using inviscid perfect-gas aerodynamics. Additionally, an aerodynamics tool that implements an engineering estimate of hypersonic aerodynamics with a moving boundary condition is developed and used to determine the flutter point of a thin-film ballute on a Titan aerocapture trajectory.
23

Numerical simulation of oblique detonation and shock-deflagration waves with a laminar boundary-layer /

Chuck, Chen, January 1990 (has links)
Thesis (Ph. D.)--University of Washington, 1990. / Vita. Includes bibliographical references (leaves [100]-105).
24

Off-design waverider flowfield CFD simulation /

Shi, Yijian, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 254-260). Also available on the Internet.
25

Off-design waverider flowfield CFD simulation

Shi, Yijian, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 254-260). Also available on the Internet.
26

Kinetic algorithms for non-equilibrium gas dynamics /

Eppard, William M., January 1993 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 162-167). Also available via the Internet.
27

Hypersonic nonequilibrium flow over an ablating teflon surface

Song, Dong Joo January 1986 (has links)
A complex chemical system of teflon/air mixture over an axisymmetric decoy at hypersonic reentry flight conditions has been analyzed by using the nonequilibrium viscous shock-layer method. The equilibrium catalytic wall boundary condition was used to obtain the species concentration at the wall. The species conservation equation for binary mixture (air/teflon) was solved to obtain the concentration of freestream air at the wall. Two test cases were chosen to demonstrate the capability of the current code. Due to lack of experimental or theoretical data, the surface measurable quantities from the current code(VSLTEF) were compared with the equivalent air injection and no-mass injection data obtained from VSL7S code. The current code predicts a higher total heat-transfer rate than that predicted by the seven species nonequilibrium air code (VSL7S) with the same injection rate due to the high diffusional heat-transfer rate. The wall pressure was not affected by blowing, while the skin-friction coefficient was decreased (i.e., 43 % reduction for teflon ablation case ; 53 % for nonequilibrium air injection case at 125 kft) when compared with that of no-mass injection case. A shock-layer peak temperature drop ( 1512° R for 125 kft altitude and 848°R for 175 kft altitude) was observed at both cases. The temperature drops were chiefly due to endothermic reactions (dissociation) of the teflon ablation species. Due to large blowing of teflon, the average molecular weight increased substantially and resulted in a reduction of the specific heat ratio γ and an increase in the Prandtl number at the wall. The impurity of sodium was the major source of free electrons near the wall at the end of the vehicle at 125 kft altitude; however, at 175 kft altitude NO⁺ was the major source of free electrons over the entire body. The peak concentration of Na⁺ increased along the body, but that of NO⁺ decreased at both altitudes; While the chemical reaction rate data used is believed to be the best currently available, uncertainties in this data as were cited by Cresswell et al.(1967) may lead to quantitative changes in the above teflon ablation results. / Ph. D.
28

Effects of a vibrationally excited gas on viscous shock-layer flows

Benton, George Lynn January 1985 (has links)
Air may be considered a mixture of diatomic nitrogen and oxygen in which all internal molecular energies including molecular vibration are considered. This leads to an adequate thermodynamic description of air up to dissociation. The thermodynamic and transport properties of this "vibrationally excited" gas are presented and compared with those of a perfect gas (which does not include vibration), and of a dissociating gas in chemical equilibrium. The effects of the vibrationally excited gas on Viscous-Shock-Layer flows are then analyzed and compared for a 7° tangent sphere-cone at zero and five degs angle of attack and at altitudes between 50 and 200 kft. The nose radius is 0.15 ft and the body is 30 nose radii long. The wall temperature and freestream velocity are constant at 2,000 °K and 25,000 ft/sec, respectively. In general, the vibrationally excited gas results are more accurate than perfect gas, and computationally much faster than equilibrium. The vibrationally excited gas also shows potential for use in the nonequilibrium flow regime where the chemical reaction rates are too high for the "stiff" finite-rate equations. This and other areas for additional research are discussed. / M.S.
29

Experimental and computational investigation of helium injection into air at supersonic and hypersonic speeds

Fuller, Eric James 19 October 2005 (has links)
Experiments were performed with two different helium injector models at different injector transverse and yaw angles in order to determine the mixing rate and core penetration of the injectant and the flow field total pressure losses. when gaseous injection occurs into a supersonic freestream. Tested in the Virginia Tech supersonic tunnel. with a freestream Mach number of 3.0 and conditions corresponding to a freestream Reynolds number of 5.0 x 107 1m. was a single. sonic. 5X underexpanded, helium jet at a downstream angle of 30° relative to the freestream. This injector was rotated from 0° to _28° to test the effects of injector yaw. The second model was an array of three supersonic, 5X underexpanded helium injectors with an exit Mach number of 1.7 and a transverse angle of 15°. This model was tested in the NASA Langley Mach 6.0, High Reynolds number tunnel, with freestream conditions corresponding to a Reynolds number of 5.4 x 10⁷ /m. The injector array as tested at yaw angles of 0° and -15°. Surface flow visualization showed that significant flow asymmetries were produced by injector yaw. Nanosecond exposure shadowgraph pictures were taken, showing the gaseous injection plume to be unsteady, and further studies demonstrated this unsteadiness was related to shock waves orthogonal to the injectant bow shock, that were generated at a frequency of 30 kHz. The primary data technique used, was a concentration probe which measured the molar concentration of helium in the flow field. Concentration data and other meanflow data was taken at several downstream axial stations and yielded contours of helium concentration, total pressure, Mach number, velocity, and mass flux, as well as the static properties. From these contour plots, the various mixing rates for each case were determined. The injectant mixing rates, expressed as the maximum concentration decay, and mixing distances were found to be unaffected by injector yaw, in the Mach 3.0 experiments, but were adversely affected by injector yaw in the Mach 6.0 experiments. One promising aspect of injector yaw was the that as the yaw angle was increased, lateral motion of the injectant plume became significant, and the turbulent mixing region area increased by approximately 34%. Comparisons of the 15° transverse angled injection into a Mach 6.0 flow to previous experiments with 15° injection into a Mach 3.0 freestream, demonstrated that there is a significant decrease in initial mixing, at Mach 6.0, resulting in a much longer mixing distance. From a parametric computational study of the Mach 6.0 experiments, the effects of adjacent injectors was found to decrease lateral spreading while increasing the vertical penetration of the injectant plume, and marginally increasing the injectant core decay rate. Matching of the computational results to the experimental results was best achieved when using the Baldwin-Lomax turbulence model without the Degani-Schiff modification. / Ph. D.
30

Hypersonic test facilities: requirements analysis and preliminary design

Drauch, Gregory Andrew 07 April 2009 (has links)
There has come about, in recent years, a renewed interest in aerospace vehicles operating in the hypersonic regime. With this interest has come a need to not only reestablish the hypersonic test capability that was available in the 1960s but to enhance this capability to meet the demanding needs of today's proposed vehicles. This will require more capable hypersonic wind tunnels with larger test sections, longer run times, and test gases more closely resembling the fluid to be encountered by the vehicle being developed. This document will review the current hypersonic testing capability, examine the operating characteristics of several hypersonic vehicles to develop a set of hypersonic testing requirements, and develop a preliminary design of a required hypersonic facility that addresses the demonstrated requirements. An order of magnitude cost estimate is also presented. / Master of Science

Page generated in 0.0867 seconds