• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamic modeling, control and linear theory of a projectile equipped with a rotating internal part

Frost, Geoffrey W. 23 November 2004 (has links)
Dynamic modeling of the atmospheric flight mechanics of a projectile equipped with an uncontrolled internal rotating disk is investigated and a modified projectile linear theory is established. It is shown through modeling of this type of projectile that several coefficients of the epicyclic dynamics are altered, leading to changes in the fast and slow epicyclic modes. A study of the frequency and damping properties of the epicyclic modes is conducted by systematically varying disk orientation, location, mass, and rotational speed. It is shown that the presence of an internal rotating disk can cause substantial changes in the epicyclic dynamics, suggesting the potential of a rotating internal part as a possible control mechanism. A further study considers the active trajectory control of a projectile using a mass unbalance, created by the radial orientation of an internal part. To evaluate the potential of this concept, a seven degree-of-freedom flight dynamic model of a projectile equipped with an internal part is defined. It is shown that by holding the internal part fixed with respect to a non-rolling reference frame, predictable trajectory changes are generated including predictable impact point changes. It is also shown that using the same control mechanism and destabilizing the projectile by fundamentally altering the inertia and, or aerodynamic properties of the projectile can lead to greater control authority. / Graduation date: 2005
12

Numerical modeling of skin friction and penetration problems in geotechnical engineering

Sun, Tek-kei, 孫廸麒 January 2013 (has links)
Numerical modeling using finite element method (FEM) is well-recognized as a powerful method for both engineers and researchers to solve boundary value problems. In the modeling of geotechnical problems, the analyses are often limited to simple static problems with either steady-state effective or total stress approach while the transient response (development and dissipation of excess pore water pressure, uex) is seldom considered. Besides, infinitesimal small soil deformation is usually assumed. The simulation is further complicated when the soil-structure interaction problems involve significant soil displacements; like a pile subject to negative skin friction (NSF) and a cone/pile penetration. However, conventional FEM analysis prematurely terminates due primarily to excessive mesh distortion. One could see that simulating a transient problem with large deformation and distortion remains a great challenge. In this study, advanced FE simulations are performed to give new insights into the problems of (1) a pile subject to NSF; and (2) a cone penetration. The transient response of the NSF problem is modeled with the fluid-coupled consolidation technique and geometric nonlinearity. The fluid-coupled cone penetration problem is modeled with a newly developed adaptive approach. The NSF and cone penetration simulations involve complex soil-structure interface modeling. Two types of modified interface responses are developed and verified which consider fluid coupling. The developed algorithm is applied to back analyze a case history of a pile subject to NSF induced by surcharge loading. Promising results were shown. Development of dragload and neutral plane (NP) with time is studied. NP locates at 75% of the pile embedded length (D) in long-term. Next, a parametric study is performed to investigate the influences of pile geometries, ground compressibility and loading conditions towards the pile responses. The long-term NP locates at around 0.55D to 0.65D in the studied engineering scenarios. The maximum downdrag can be up to 10% of the pile diameter. NP shifts upward when the head load increases. A simple design chart is proposed which helps engineers to estimate the long-term axial load distribution. An illustrative example is given to demonstrate the application and performance of the chart. The study is extended to investigate the cone penetration problem. An advanced adaptive method is developed and implemented into the FE package ABAQUS to resolve the problems of numerical instability, excessive mesh distortion and premature termination. The proposed method is verified by modeling a ground consolidation problem. Next, total stress back analysis of cone penetration is conducted with the proposed method. The development of cone factor predicted by the proposed method gives a better match with the laboratory result when comparing with the built-in ALE method. Next, the development and dissipation of uex during cone advancing with the proposed method and fluid-coupled technique is investigated. uex develops dramatically around the cone tip. The soil permeability is back calculated from the dissipation test and agrees well with the input value. It is believed that the construction effects of a press-in pile and the subsequence NSF on that pile can be modeled by utilizing the finding of this study. / published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
13

Extending the functionalities of Cartesian grid solvers : viscous effects modeling and MPI parallelization

Marshall, David D. 05 1900 (has links)
No description available.
14

Unsteady airfoil flow control via a dynamically deflected trailing-edge flap

Gerontakos, Panayiote January 2008 (has links)
No description available.
15

The dynamics of two-dimensional cantilevered flexible plates in axial flow and a new energy-harvesting concept /

Tang, Liaosha, 1970- January 2007 (has links)
No description available.
16

caHydrodynamic analysis of flapping foils for the propulsion of near surface under water vehicles using the panel method

Unknown Date (has links)
This thesis presents two-dimensional hydrodynamic analysis of flapping foils for the propulsion of underwater vehicles using a source-vortex panel. Using a simulation program developed in MatLab, the hydrodynamic forces (such as the lift and the drag) as well as the propulsion thrust and efficiency are computed with this method. The assumptions made in the analysis are that the flow around a hydrofoil is two-dimensional, incompressible and inviscid. The analysis is first considered for the case of a deeply submerged hydrofoil followed by the case where it is located in shallow water depth or near the free surface. In the second case, the presence of the free surface and wave effects are taken into account, specifically at high and low frequencies and small and large amplitudes of flapping. The objective is to determine the thrust and efficiency of the flapping –foils under the influence of added effects of the free surface. Results show that the free-surface can significantly affect the foil performance by increasing the efficiency particularly at high Frequencies. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
17

Characterizing Tilt Effects on Wind Plants

Scott, Ryan 14 June 2019 (has links)
Tilting the nacelle of a wind turbine modifies entrainment into the wind plant and impacts total efficiency. Extreme angles can produce flying and crashing wakes where the wake either disrupts entertainment from the undisturbed flow above or is decimated on the ground. The effect of tilt angle on downstream wake behavior was investigated in a series of wind tunnel experiments. Scale model turbines with a hub height and diameter of 12 cm were arranged in a Cartesian array comprised of four rows of three turbines each. Nacelle tilt was varied in the third row from -15° to 15° in chosen 5° increments. Stereo PIV measurements of the instantaneous velocity field were recorded at four locations for each angle. Tilted wakes are described in terms of the average streamwise velocity field, wall-normal velocity field, Reynolds stresses, and mean vertical transport of kinetic energy. Conditional sampling is used to quantify the importance of sweep vs. ejection events and thus downwards vs. upwards momentum transfer. Additionally, wake center displacement and changes in net power are presented and compared to existing models. The results demonstrate large variations in wake velocity and vertical displacement with enhanced vertical energy and momentum transfer for negative tilt angles. Simulation models accurately predict wake deflection while analytic models deviate considerably highlighting the difficulties in describing tilt phenomena. Negative angles successfully produce crashing wakes and improve the availability of kinetic energy thereby improving the power output of the wind plant.
18

Numerical simulations of nonlinear baroclinic instability with a spherical wave-mean flow model

Wang, Chunzai 11 June 1991 (has links)
A global, multi-level, wave-mean flow model based on an approximate version of the primitive equations is developed to investigate the development of a baroclinic wave field initially confined to a single zonal wavenumber. The effects of physical processes (surface drag and thermal damping) and internal diffusion on the evolution have been examined. The nature of the mean flow adjustment by the nonlinear baroclinic waves is also studied. For a simulation with a relatively strong internal diffusion it is found that a single life cycle characterized by baroclinic growth and barotropic decay is obtained (as in Simmons and Hoskins, 1978), whereas with weaker diffusion the wave undergoes secondary life cycles before a nearly wave-free state is reached (as in Barnes and Young, 1991). In an experiment with weak 4th order diffusion secondary life cycles occur with little net decay. Relatively strong barotropic growth follows the initial life cycle. In experiments with surface drag (Rayleigh friction) and thermal damping (Newtonian cooling), repeated life cycles of baroclinic growth and barotropic decay can be obtained. It is found that in the complete absence of surface drag, the flow evolves to a nearly wave-free state after one secondary cycle. This demonstrates that surface drag plays an important role in nonlinear baroclinic instability. With relatively strong surface drag multiple life cycle behavior is found for sufficiently strong thermal damping. Such a behavior strengthens for very strong thermal damping. A steady wave state in which the wave amplitude equilibrates at an essentially constant level has only been obtained with very strong "potential vorticity damping". Both the "barotropic governor" process (James and Gray, 1986) and the baroclinic adjusment process are responsible for major parts of the stabilization of the mean flow in simulations with and without surface drag and thermal damping. However, the "barotropic governor" process dominates the flow evolution in the model simulations without surface drag and thermal damping. The "barotropic governor" modifies the meridional gradient of zonal mean potential vorticity, which influences the baroclinic adjustment. / Graduation date: 1992
19

Experiments on the dynamics of cantilevered pipes subjected to internal andor external axial flow

Rinaldi, Stephanie. January 2009 (has links)
The main objective of this thesis is to study and investigate the dynamics and stability of cantilevered structures subjected to internal, external, or simultaneous internal and external axial flows. This was accomplished, in some cases, by deriving the linear equations of motion using a Newtonian approach and, in other cases, by making the necessary modifications to existing theoretical models. The continuous cantilevered systems were then discretized using the Galerkin method in order to determine their complex eigenfrequencies. Moreover, numerous experiments were performed to compare and validate, or otherwise, the theoretical models proposed. More specifically, the four cantilevered systems studied were the following: (i) a pipe conveying fluid that is fitted with a stabilizing end-piece, which suppresses flutter by blocking the straight-through exit of flow at the downstream end; (ii) a pipe aspirating fluid, which flutters at low flow velocities in its first mode; (iii) a free-clamped cylinder (i.e. with the upstream end free and the downstream end clamped) in confined axial flow, which also flutters at low flow velocities in its first mode and eventually develops a buckling instability; and (iv) a pipe subjected to internal flow, which after exiting the pipe is transformed to a confined counter-current annular flow, that becomes unstable by flutter too.
20

Wake Character in the Wind Turbine Array: (Dis-)Organization, Spatial and Dynamic Evolution and Low-dimensional Modeling

Hamilton, Nicholas Michael 06 July 2016 (has links)
To maximize the effectiveness of the rapidly increasing capacity of installed wind energy resources, new models must be developed that are capable of more nuanced control of each wind turbine so that each device is more responsive to inflow events. Models used to plan wind turbine arrays and control behavior of devices within the farm currently make questionable estimates of the incoming atmospheric flow and update turbine configurations infrequently. As a result, wind turbines often operate at diminished capacities, especially in arrays where wind turbine wakes interact and inflow conditions are far from ideal. New turbine control and wake prediction models must be developed to tune individual devices and make accurate power predictions. To that end, wind tunnel experiments are conducted detailing the turbulent flow in the wake of a wind turbine in a model-scale array. The proper orthogonal decomposition (POD) is applied to characterize the spatial evolution of structures in the wake. Mode bases from distinct downstream locations are reconciled through a secondary decomposition, called double proper orthogonal decomposition (DPOD), indicating that modes of common rank in the wake share an ordered set of sub-modal projections whose organization delineates underlying wake structures and spatial evolution. The doubly truncated basis of sub-modal structures represents a reduction to 0.015% of the total degrees of freedom of the wind turbine wake. Low-order representations of the Reynolds stress tensor are made using only the most dominant DPOD modes, corrected to account for energy excluded from the truncated basis with a tensor of constant coefficients defined to rescale the low-order representation of the stresses to match the original statistics. Data from the wind turbine wake are contrasted against simulation data from a fully-developed channel flow, illuminating a range of anisotropic states of turbulence. Complexity of flow descriptions resulting from truncated POD bases is suppressed in severe basis truncations, exaggerating anisotropy of the modeled flow and, in extreme cases, can lead to the loss of three dimensionality. Constant corrections to the low-order descriptions of the Reynolds stress tensor reduce the root-mean-square error between low-order descriptions of the flow and the full statistics as much as 40% and, in some cases, reintroduce three-dimensionality to severe truncations of POD bases. Low-dimensional models are constructed by coupling the evolution of the dynamic mode coefficients through their respective time derivatives and successfully account for non-linear mode interaction. Deviation between time derivatives of mode coefficients and their least-squares fit is amplified in numerical integration of the system, leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time and using a virtual sensor upstream of the wind turbine actuator disk in to read the effective inflow velocity. A series of open-loop transfer functions are designed to inform the low-order dynamical system of the flow incident to the wind turbine rotor. Validation data shows that the model tuned to the inflow reproduces dynamic mode coefficients with little to no error given a sufficiently small interval between instances of recalibration. The reduced-order model makes accurate predictions of the wake when informed of turbulent inflow events. The modeling scheme represents a viable path for continuous time feedback and control that may be used to selectively tune a wind turbine in the effort to maximize power output of large wind farms.

Page generated in 0.1559 seconds