Spelling suggestions: "subject:"aerodynamics anda fluid mechanics"" "subject:"aerodynamics anda fluid echanics""
151 |
Bi-stability in the Wakes of Platooning Ahmed BodiesStalters, Daniel M 01 December 2018 (has links) (PDF)
Autonomous heavy vehicles will enable the promise of decreased energy consumption through the ability to platoon in closer formation than is currently safe or legal. It is therefore increasingly important to understand the complex and dynamic wake interactions between vehicles operating in close proximity for aerodynamic gains. In recent years, a growing body of research has documented a bi-stable, shifting wake generated behind the Ahmed reference bluff body. At the same time, studies of platooning Ahmed bodies have focused on changes to the body forces and moments at different following distances or lateral offsets, typically based around time-averaged measurements or steady-state CFD. The present study attempts to understand the implications of bi-stability in the wake of two square-back, platooning Ahmed bodies, given the potential for transient instabilities. Temporally-correlated static pressures were measured on two identical wind tunnel models at various following distances to uncover the time-dependent interactions between platooning vehicles. Bi-stability is highly dependent on symmetry and the uniformity of oncoming flow, and it is shown that a shifting bi-stable wake behind the lead vehicle leads to correlated, bi-stable flow patterns on the following vehicle, even in the absence of a lateral offset. At a following distance of 0.25L, pressure data indicated there may be a point where this bi-stable behavior reaches a critical point between suppression and amplification, significantly affecting the aerodynamic loads on the lead vehicle. This leads to the conclusion that bi-stable wake interactions between vehicles may be useful to consider in the context of real-time organization of vehicle platoons.
|
152 |
A System for Measuring the Lift and Drag Forces of a Spinning Golf Ball Held Fixed Within a Wind TunnelMiller, Ryan R 01 February 2009 (has links) (PDF)
A system was designed, built and tested in order to test the aerodynamic properties of a standard golf ball in a wind tunnel manufactured by ELD, Inc. model 406(B). The system consists of a rotating shaft, on which the golf ball is attached, connected to a two-axis force transducer. Additionally, an automated data acquisition system was built for enhanced precision of measurements. Data for wind speeds up to 160 ft/s and rotational speeds up to 8,600 rpm were obtained and analyzed. The purpose of the designed apparatus was to allow for studies to better understand the lift and drag coefficients of golf balls during their flight. Subsequent to testing, it was found that the force transducer was not adequate to measure the lift and drag coefficients with sufficient accuracy. Several suggestions have been made on how to improve the wind tunnel so that better results might be obtained in the future.
|
153 |
Numerical Examination of Flow Field Characteristics and Fabri Choking of 2D Supersonic EjectorsMorham, Brett G 01 June 2010 (has links) (PDF)
An automated computer simulation of the two-dimensional planar Cal Poly Supersonic Ejector test rig is developed. The purpose of the simulation is to identify the operating conditions which produce the saturated, Fabri choke and Fabri block aerodynamic flow patterns. The effect of primary to secondary stagnation pressure ratio on the efficiency of the ejector operation is measured using the entrainment ratio which is the secondary to primary mass flow ratio.
The primary flow of the ejector is supersonic and the secondary (entrained) stream enters the ejector at various velocities at or below Mach 1. The primary and secondary streams are both composed of air. The primary plume boundary and properties are solved using the Method of Characteristics. The properties within the secondary stream are found using isentropic relations along with stagnation conditions and the shape of the primary plume. The solutions of the primary and secondary streams iterate on a pressure distribution of the secondary stream until a converged solution is attained. Viscous forces and thermo-chemical reactions are not considered.
For the given geometry the saturated flow pattern is found to occur below stagnation pressure ratios of 74. The secondary flow of the ejector becomes blocked by the primary plume above pressure ratios of 230. The Fabri choke case exists between pressure ratios of 74 and 230, achieving optimal operation at the transition from saturated to Fabri choked flow, near the pressure ratio of 74. The case of optimal expansion yields an entrainment ratio of 0.17. The entrainment ratio results of the Cal Poly Supersonic Ejector simulation have an average error of 3.67% relative to experimental data. The accuracy of this inviscid simulation suggests ejector operation in this regime is governed by pressure gradient rather than viscous effects.
|
154 |
Experimental Investigation of Active Wingtip Vortex Control Using Synthetic Jet ActuatorsSudak, Peter J 01 August 2014 (has links) (PDF)
An experiment was performed in the Cal Poly Mechanical Engineering 2x2 ft wind tunnel to quantify the effect of spanwise synthetic jet actuation (SJA) on the drag of a NACA 0015 semispan wing. The wing, which was designed and manufactured for this experiment, has an aspect ratio of 4.20, a span of 0.427 m (16.813”), and is built around an internal array of piezoelectric actuators, which work in series to create a synthetic jet that emanates from the wingtip in the spanwise direction. Direct lift and drag measurements were taken at a Reynolds Number of 100,000 and 200,000 using a load cell/slider mechanism to quantify the effect of actuation on the lift and drag. It was found that the piezoelectric disks used in the synthetic jet actuators cause structural vibrations that have a significant effect on the aerodynamics of the NACA 0015 model. The experiment was performed in a way as to isolate the effect of vibration from the effect of the synthetic jet on the lift and drag. Lift and drag data was supported with pressure readings from 60 pressure ports distributed in rows along the span of the wing. Oil droplet flow visualization was also performed to understand the effect of SJA near the wingtip.
The synthetic jet and vibration had effects on the drag. The synthetic jet with vibration decreased the drag only slightly while vibration alone could decrease drag significantly from 11.3% at α = 4° to 23.4% at α = 10° and Re = 100,000. The lift was slightly increased with a slight increase due to the jet and showed a slight increase due to vibration. Two complete rows of pressure ports at 2y/b = 37.5% and 85.1% showed changes in lift due to actuation as well. The synthetic jet increased the lift near the wingtip at 2y/b = 85.1% and had little to no effect inboard at the 37.5% location, hence, the synthetic jet changes the lift distribution on the wing. Oil flow visualization was used to support this claim. Without actuation, the footprint of the tip vortex was present on the upper surface of the wing. With actuation on, the footprint disappeared suggesting the vortex was pushed off the wingtip by the jet. It is possible that the increased lift with actuation can be caused by the vortex being pushed outboard.
|
155 |
Experimental Investigation of Drag Reduction by Trailing Edge Tabs on a Square Based Bluff Body in Ground EffectSawyer, Scott R 01 May 2015 (has links) (PDF)
This thesis presents an experimental investigation of drag reduction devices on a bluff body in ground effect. It has previously been shown that the addition of end-plate tabs to a rectangular based bluff body with an aspect ratio of 4 is effective in eliminating vortex shedding and reducing drag for low Reynolds number flows. In the present study a square based bluff body, both with and without tabs, will be tested under the same conditions, except this time operating within proximity to a ground plane in order to mimic the properties of bounded aerodynamics that would be present for a body in ground effect.
|
156 |
Integral Boundary Layer Methods in PythonEdland, Malachi Joseph 01 August 2021 (has links) (PDF)
This thesis presents a modern approach to two Integral Boundary Layer methods implemented in the Python programming language. This work is based on two 2D boundary layer methods: Thwaites' method for laminar boundary layer flows and Head's method for turbulent boundary layer flows. Several novel enhancements improve the quality and usability of the results. These improvements include: a common ordinary differential equation (ODE) integration framework that generalizes computational implementations of Integral Boundary Layer methods; the use of a dense output Runge-Kutta ODE solver that allows for querying of simulation results at any point with accuracy to the same order as that of the solver; and an edge velocity treatment method using cubic spline interpolation that improves the simulation performance using only points from an inviscid edge velocity distribution. Both the laminar and turbulent methods are shown to benefit from smoothing of the edge velocity distribution. The choice of ODE solver alleviates the need to artificially limit step sizes. Comparisons against analytic solutions, experimental data and XFOIL results provide a wide varity of verification and validation cases with which to compare. The implementation of Thwaites' method in this thesis avoids simplifications made in other implementations of this method, which results in more robust results. The implementation of Head's method produces high-quality results typically found in other implementations while utilizing the common ODE integration framework. Utilizing the common ODE framework results in significantly less code needed to implement Thwaites' and Head's methods. In addition, the boundary layer solvers produce results in seconds for all results presented here. Boundary layer transition and separation criteria are implemented as a proof of concept, but require future work.
|
157 |
Characterization, Design, and Optimization of Dual-Purpose Wind Turbines and Frost Protection FansNarad, Ethan 01 February 2022 (has links) (PDF)
This thesis report outlines the creation of a MATLAB tool to design reversible machines that can function as both wind turbines and as agricultural frost protection fans. Frost protection fans are used to prevent crop loss during radiative freeze events during which a temperature inversion is present. Such a dual-purpose machine fundamentally has the constraint that it must use symmetric airfoils, so a suite of tools for automatically designing an optimized wind turbine blade with symmetric airfoils using the Blade Element Momentum (BEM) theory approach is presented. The BEM code is then re-derived and adapted for use with a frost protection fan, which is analogous to a propeller at zero free-stream windspeed. The relative performance of a blade operating in fan mode is investigated using a turbulent jet entrainment model to predict the time-averaged temperature rise provided by the fan during a thermal inversion event. With these tools, an optimal configuration of blade pitch angle, rotor tilt angle, and tower height can be found for a given wind turbine blade. The models are incorporated into a cohesive program with a graphical user interface. The feasibility of such machines is found to depend heavily on the wind resource at a given site.
|
158 |
Unsteady Total Pressure Measurement for Laminar-to-Turbulent Transition DetectionKarasawa, Akane Sharon 01 August 2011 (has links) (PDF)
This thesis presents the use of an unsteady total pressure measurement to detect laminar-to-turbulent transition. A miniature dynamic pressure transducer, Kulite model XCS-062-5D, was utilized to measure the total pressure fluctuations, and was integrated with an autonomous boundary layer measurement device that can withstand flight test conditions. Various sensor-probe configurations of the Kulite pressure transducer were first examined in a wind tunnel with a 0.610 m (2.0 ft) square test section with a maximum operational velocity of 49.2 m/s (110 mph), corresponding dynamic pressure of 1.44 kPa (30 psf). The Kulite sensor was placed on an elliptical nose flat plate where the flow was known to be turbulent. The Kulite sensor was then evaluated to measure total pressure fluctuations in laminar, turbulent, and transition of boundary layers developed on the flat plate in the same wind tunnel. The root-mean-square value of total pressure fluctuations was less than 1 % of the local free-stream dynamic pressure in the laminar boundary layer, but was about 2 % in the turbulent boundary layer. The value increased to 4 % in transition, indicating that the total pressure fluctuation measurements can be used not only to distinguish the laminar boundary layer from the turbulent boundary layer, but also to identify the transition region. The unsteady total pressure measurement was also conducted in a with a 2.13 m (7.0 ft) by 3.05 m (10.0 ft) section with similar operational velocity range as the previous wind tunnel. The Kulite sensor was placed on a wing model under laminar and transition conditions. The testing yielded similar results, demonstrating the usefulness of total pressure measurement for identifying the laminar-to-turbulent transition.
|
159 |
The Development and Validation of SINATRA: A Three-Dimensional Direct Simulation Monte Carlo (DSMC) Code Written in Object-Oriented C++ and Performed on Cartesian GridsGalvez, David Matthew 01 August 2018 (has links) (PDF)
The field of Computational Fluid Dynamics (CFD) primarily involves the approximation of the Navier-Stokes equations. However, these equations are only valid when the flow is considered continuous such that molecular interactions are abundant and predictable. The Knudsen number, $Kn$, which is defined as the ratio of the flow's mean free path, $\lambda$, to some characteristic length, $L$, quantifies the continuity of any flow, and when this parameter is large enough, alternative methods must be employed to simulate gases. The Direct Simulation Monte Carlo (DSMC) method is one which simulates rarefied gas flows by directly simulating the particles that compose the flow and using probabilistic methods to determine their collisions and properties.
This thesis discusses the development of a new DSMC simulation code, named SINATRA, which was written in object-oriented C++ and validated on Cartesian grids. The code demonstrates the ability to perform standard simulation code tasks which include reading-in a user-made input file, performing the specified simulation, and generating visualization files compatible with Tecplot 360\texttrademark, a commercial post-processing software. SINATRA strategically uses an octree data structure as a storage scheme for computational grid data and uses this a backbone for particle interactions. The discussed validation cases include comparisons of initial particle properties to theoretical data, convergence studies for the sampling of macroscopic properties, and validation of transport properties through natural diffusion and Couette flow simulations. The results show successful implementation of simple DSMC procedures, and a path for future development of the code is thoroughly discussed.
|
160 |
Assessing the v2-F Turbulence Models for Circulation Control ApplicationsStorm, Travis M 01 April 2010 (has links) (PDF)
In recent years, airports have experienced increasing airport congestion, partially due to the hub-and-spoke model on which airline operations are based. Current airline operations utilize large airports, focusing traffic to a small number of airports. One way to relieve such congestion is to transition to a more accessible and efficient point-to-point operation, which utilizes a large web of smaller airports. This expansion to regional airports propagates the need for next-generation low-noise aircraft with short take-off and landing capabilities. NASA has attacked this problem with a high-lift, low-noise concept dubbed the Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The goal of the CESTOL project is to produce aircraft designs that can further expand the air travel industry to currently untapped regional airports.
One method of obtaining a large lifting capability with low noise production is to utilize circulation control (CC) technology. CC is an active flow control approach that makes use of the Coanda effect. A high speed jet of air is blown over a wing flap and/or the leading edge of the wing, which entrains the freestream flow and effectively increases circulation around the wing.
A promising tool for predicting CESTOL aircraft performance is computational fluid dynamics (CFD,) due to the relatively low cost and easy implementation in the design process. However, the unique flows that CC introduces are not well understood, and traditional turbulence modeling does not correctly resolve these complex flows (including high speed jet flow, complex shear flows and mixing phenomena, streamline curvature, and other challenging flow phenomena). The recent derivation of the v2-f turbulence model shows theoretical promise in increasing the accuracy of CFD predictions for CC flows, but this has not yet been assessed in great detail. This paper presents a methodical verification of several variations on the v2-f turbulence model. These models are verified using simple, well-understood flows. Results for CC flows are compared to those obtained with more traditional turbulence modeling techniques (including the Spalart-Allmaras, k-ε, and k-ω turbulence models). Wherever possible, computed results are compared to experimental data and more accurate numerical methods.
Results indicate that the v2-f turbulence models predict some aspects of circulation control flow fields quite well, in particular the lift coefficient. The linear v2-f, nonlinear v2-f, and nonlinear v2-f-cc turbulence models have generated lift coefficients within 19%, 14%, and -26%, respectively of experimental values, whereas the Spalart-Allmaras, k-ε, and k-ω turbulence models produce errors as high as 85%, 36%, and 39%, respectively. The predicted stagnation points and pressure coefficient distributions match experimental data roughly as well as standard turbulence models do, though the modeling of these aspects of the flow do show some room for improvement. The nonlinear v2-f-cc turbulence model shows very non-physical skin friction coefficient profiles, pressure coefficient profiles, and stagnation points, indicating that the streamline curvature correction terms need attention. Regardless of the source of the discrepancies, the v2-f turbulence models show promise in the modeling of circulation control flow fields, but are not quite ready for application in the design of circulation control aircraft.
|
Page generated in 0.0876 seconds