Spelling suggestions: "subject:"aeronautique"" "subject:"aéronautique""
1 |
Analyses expérimentale, numérique et optimisation de traitements acoustiques multicouches à base de matériaux viscoélastiques et poreux pour réduire le bruit à bord de l’avionCintosun, Esen January 2011 (has links)
Résumé : Ce projet de recherche est composé de trois parties principales : la première comprend l'analyse expérimentale et la simulation des performances vibratoires de matériaux avec amortissement viscoélastique, en tant que traitements acoustiques appliqués aux structures du fuselage d'un avion. La deuxième partie comprend l'analyse expérimentale et le calcul de la performance acoustique de ces matériaux amortissant en comparaison avec l'effet d'une masse équivalente. Enfin, la troisième partie est une étude paramétrique sur les effets de localisation, de la densité et de la taille d'un traitement massique. Les systèmes d'isolation phoniques typiquement employés dans la construction des fuselages d'avions sont composés de matériaux poreux, avec ou sans des matériaux amortissant (matériaux viscoélastiques). La performance et donc l'utilité de ces traitements amortissant, en comparaison avec une couche de masse équivalente, reste une question largement ouverte. Dans ce travail on a comparé numériquement et expérimentalement les performances acoustiques d'un traitement amortissant avec celui d'une masse équivalente tous les deux incorporées dans le traitement phonique et ceci pour plusieurs types d'excitations. Deux structures représentant des fuselages, une en aluminium et la seconde en carbone composite, ont été sélectionnées pour cette étude ainsi que deux matériaux poreux couramment utilisés en aéronautique : une laine en fibre de verre et une mousse à cellules ouvertes. Deux types d'excitations ont été étudiés numériquement et expérimentalement. La première est une excitation acoustique (champ diffus) et la seconde mécanique (forces ponctuelles). Une troisième, excitation par couche limite turbulente a été étudié numériquement. Dans tous les cas, la perte par insertion du traitement acoustique est utilisée comme indicateur principal de la performance. D'autres indicateurs comme le coefficient d'absorption, le coefficient de perte par amortissement et la vitesse quadratique moyenne sont aussi utilisés pour mieux cerner et expliquer l'effet du traitement. Il a été démontré que l'utilisation d'une couche de masse équivalente à un traitement viscoélastique conduit systématiquement à la meilleure performance acoustique et ceci pour les trois types d'excitations étudiées. En particulier, dans le cas classique où le traitement amortissant est appliqué directement au fuselage. Dans ce dernier cas, les effets de doubles parois créés par la couche massique, positionnée judicieusement loin du fuselage, augmentent la performance en moyennes et hautes fréquences. Les performances en basses fréquences restent limitées par la fréquence de résonance double parois. Et même l'effet amortissant des traitements viscoélastiques, théoriquement visible aux résonances et coïncidences du système, se trouve limité par l'amortissement ajouté par le montage et le traitement absorbants. Cependant, l'efficacité de la couche massique est compromise par les difficultés d'installations et en particulier pour les fibreux. Les résultats de cette thèse restent toutefois limités par notre choix de structures et de traitements étudiés. / Abstract : The project is made up of three main parts. The first part involves a comprehensive experimental and numerical analysis of viscoelastic damping materials as acoustic treatments to aircraft fuselage structures. The second part involves numerical and experimental acoustic comparison of viscoelastic damping material to equivalent mass. And the third part is a parametric study of equivalent mass for the effects of mass location, density and size. The goal of the project is to identify the vibroacoustic effect of viscoelastic material damping of fuselage skin, and develop possible alternatives to damping. The insulation systems (typically used on aircraft) that are made up of porous materials with or without viscoelastic damping material or equivalent mass were called sound packages throughout this document. The viscoelastic damping material and equivalent mass both incorporated in sound packages were acoustically compared. Fiberglass and open cell foam were used as porous materials. The viscoelastic damping material used in this study is constraining layer damping and abbreviated as CLD. The equivalent mass was an impervious screen. Both representative Aluminum and carbon composite fuselage skin structures were treated with sound packages as part of the comparison. The vibroacoustic performance indicators were used to characterize the sound packages. The indicators were airborne insertion loss (ABIL), structure borne insertion loss (SBIL), turbulent boundary layer insertion loss (TBLIL), average quadratic velocity (AQV), damping loss factor (DLF), absorption coefficient, and radiation efficiency. Diffuse field acoustic excitation was used to obtain the vibroacoustic indicators of ABIL and absorption coefficient. Mechanical excitation was used to obtain SBIL, AQV, DLF, absorption coefficient, and radiation efficiency. Turbulent boundary layer excitation was modeled to obtain TBLIL. The numerical methods of finite element method (FEM) and transfer matrix method (TMM) were used to calculate all of the above vibroacoustic performance indicators. Experimentally, ABIL, SBIL, AQV, DLF and radiation efficiency were measured. Experimental modal analysis was also performed to characterize representative Aluminum and carbon composite fuselage skin structures. Based on the numerical analysis, equivalent mass generated a double or multiple (in case of double wall layer configuration) wall effect and hence became an effective acoustic insulator as part of sound packages at mid to high frequencies. Even at coincidence frequencies (in case of the representative carbon composite fuselage skin), the equivalent mass layer was more effective than viscoelastic damping material. However, the drawback was the occurrence of the double wall resonance at lower frequencies which compromised the effectiveness. Nevertheless, the parametric study of equivalent mass revealed that equivalent mass is superior to viscoelastic damping material at reduced weight in term of vibroacoustic performance indicators of overall ABIL/SBIL/TBLIL in the frequency range of 100 to 6300 Hz and mean ABIL/SBIL/TBLIL in SIL (octave lk, 2k, 4k Hz) frequency range.
|
2 |
Modélisation des dépendances fonctionnelles pour l'analyse des risques de niveau avion.Maitrehenry, S. 04 October 2013 (has links) (PDF)
Nos travaux se situent au croisement de trois domaines : la sûreté de fonctionnement, l'analyse fonctionnelle et l'ingénierie des modèles. Dans l'objectif d'assister les analyses préliminaires des risques, nous avons proposé d'exploiter les modèles issus de l'analyse fonctionnelle de l'avion. Ces modèles décrivent les dépendances entre les fonctions qui doivent être réalisées durant une phase de vol. Pour exploiter ces modèles, nous avons introduit la notion d'efficacité qui mesure le degré de contribution d'une fonction à la réalisation nominale d'une phase de vol. Cette notion est utile pour les analyses de risques car elle permet de formaliser divers cas de dysfonctionnements des fonctions et pour évaluer le niveau de dégradation d'une phase de vol en cas de dysfonctionnement d'une ou plusieurs fonctions. Nous avons proposé d'annoter les modèles issus de l'analyse fonctionnelle avec des informations relatives à l'efficacité des fonctions et à leurs dysfonctionnements possibles. En suivant les principes de la transformation de modèles, nous avons étudié les moyens de produire le plus automatiquement possible des modèles utiles aux analyses de risques à partir des modèles annotés. Les modèles produits sont décrits avec le langage AltaRica, ils peuvent être analysés avec les outils associés à ce langage afin d'évaluer l'effet du dysfonctionnement de fonctions de l'avion ou de rechercher les combinaisons de dysfonctionnements les plus critiques. L'approche proposée a été appliquée pour analyser les risques associés aux fonctions utiles lors du décollage d'un avion.
|
3 |
Magnus Based Airborne Wind Energy Systems / Système éolien aéroporté : Contrôle et expérimentationGupta, Yashank 29 November 2018 (has links)
Le siècle dernier a été le siècle de la révolution technologique. Les combustibles fossiles ont alimenté cette révolution technologique. Les défis auxquels notre société est confrontée, que ce soit le changement climatique ou la situation énergétique mondiale ou l’épuisement des réserves de combustibles fossiles, sont les défis les plus graves auxquels sont confrontés toutes les générations. L'énergie renouvelable est considérée comme la clé des problèmes énergétiques de notre société. De nombreuses technologies innovantes se font concurrence pour alimenter la prochaine révolution énergétique. Sources d'énergies renouvelables telles que l'énergie solaire, l'énergie éolienne, la biomasse, l'hydroélectricité, l'énergie géothermique, etc. Presque tous sont saisonniers, et sont donc des sources d'énergie discontinues et non uniformes. Ils ont également une limitation en termes de choix des sites de production et, en général, nécessitent de grandes étendues de terre pour les plantes, ce qui conduit à une faible densité de puissance par unité de surface.Néanmoins, l'énergie éolienne et solaire a beaucoup attiré l'attention au cours des dernières décennies. Cependant, pour que le monde passe complètement des énergies fossiles et de l’énergie nucléaire à l’énergie éolienne et solaire, il est nécessaire de développer de nouveaux types de systèmes capables de générer de l’énergie à moindre coût avec moins de contraintes de sélection de sites.Dans la quête de la source d'énergie pérenne. Notre société se tourne vers la communauté scientifique pour des solutions innovantes. Cette thèse est une étape vers la recherche de solutions innovantes à nos problèmes énergétiques. Les systèmes d'énergie éolienne à haute altitude (HAWE) ou plus communément appelés systèmes éoliens aéroportés (AWES) sont considérés comme la réponse aux besoins énergétiques des générations futures. L'énergie éolienne aéroportée (AWE) est un concept innovant visant à utiliser l'énergie des courants de vent à haute altitude, car les courants de vent à haute altitude sont presque uniformes dans le monde entier et AWES peut pratiquement être installé partout dans le monde. De plus, les systèmes AWE proposés nécessitent moins de matériau de structure. Ils devraient donc être beaucoup moins chers que toute autre source d’énergie disponible. AWE est donc une perspective prometteuse dans cette quête pour trouver une solution à nos problèmes énergétiques.Dans ce travail, la faisabilité des systèmes d'énergie éolienne aéroportés basés sur Magnus est explorée. Le travail présente en détail un bref historique des systèmes d'énergie éolienne aéroportés et des concepts de base nécessaires pour développer une compréhension de la technologie AWE. Il examine en détail les systèmes aéroportés basés sur Magnus et donne une perspective historique sur les machines basées sur l’effet Magnus. Il présente en détail les propriétés aérodynamiques de l’effet Magnus et présente un modèle aérodynamique pour ces systèmes. Puisque la modélisation est un aspect important de toute technologie. Ce travail présente un modèle détaillé des systèmes AWE basés sur Magnus ainsi que les algorithmes de contrôle nécessaires au fonctionnement de tels systèmes. Les courbes de puissance sont des outils couramment utilisés pour analyser les systèmes d'énergie éolienne. Ce travail présente une approche pour la conception de courbes de puissance pour les systèmes AWE afin d'analyser les capacités de production d'énergie des systèmes d'énergie éolienne aéroportés. / Last century has been the century of the technology revolution. Fossil fuels have fueled this technology revolution. The challenges faced by our society be it the climate change or the world energy situation or the depletion of fossil fuel reserves are the most grievous challenges faced by any generation. Renewable energy is believed to be the key to energy problems of our society. There are many innovative technologies competing against each other to fuel the next energy revolution. Renewables sources of energies such as solar, wind, biomass, hydropower, geothermal etc. Though promising but due to the high economic cost and limited application they are yet to prove their mass scale applicability. Almost all of them are seasonal, hence, are discontinuous and non-uniform sources of energy. They also have a limitation in terms of choice of plant sites, and generally, require large tracts of land for plants which lead to low power density per unit area.Nonetheless, Wind and Solar energy have attracted a lot of attention in the last few decades. However, for the world to fully shift from fossil fuels and nuclear energy to Wind and Solar power, it is necessary to develop new kind of systems which can generate continuous power at a lower cost with fewer site selection constraints.In the quest to find the perennial clean source of energy. Our society is looking towards the scientific community for innovative solutions. This thesis is one such step towards finding innovative solutions to our energy problems. High altitude wind energy systems (HAWE) or more commonly known as Airborne wind energy systems (AWES) are believed to be the answer to the energy needs of the future generations. Airborne wind energy (AWE) is an innovative concept aiming at utilizing the energy of the high altitude wind currents, as high altitude wind currents are almost uniform across the globe, and AWES can be practically set-up anywhere around the world. Also, the proposed AWE systems require less structural material. Thus, they are expected to be much cheaper than any other available energy source. Therefore, AWE is a promising prospect in this quest to find a solution to our energy problems.In this work, the feasibility of Magnus-based airborne wind energy systems is explored. The work presents in detail a brief history of Airborne wind energy systems and the basic concepts needed to develop an understanding about the AWE technology. It discusses in detail Magnus-based airborne systems and gives a historical perspective on the Magnus-effect based machines. It discusses in detail the aerodynamical properties of the Magnus effect and presents an aerodynamic model for such systems. Since modeling is an important aspect of any technology. This work presents a detailed model of the Magnus-based AWE systems along with the control algorithms required for the operation of such systems. A common tool used to analyze wind-based energy systems is power curves. This work presents an approach to design power curves for AWE systems in order to analyze the power producing capabilities of Airborne wind energy systems.
|
Page generated in 0.0508 seconds