• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 391
  • 94
  • 77
  • 76
  • 73
  • 33
  • 27
  • 15
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 955
  • 148
  • 142
  • 95
  • 90
  • 89
  • 89
  • 89
  • 89
  • 83
  • 76
  • 76
  • 74
  • 73
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Atmospheric Aerosols Aging Involving Organic Compounds and Impacts on Particle Properties

Qiu, Chong 02 October 2013 (has links)
In the first part of this dissertation, we study the aging of soot, a representative type of primary aerosols, in the presence of OH-initiated oxidation products of toluene. Monodisperse soot particles are introduced into an environmental chamber where toluene is oxidized by OH radicals. The variations in soot particle properties are simultaneously monitored, including particle size, mass, organic mass faction, hygroscopicity, and optical properties. The changes in particle properties are found to be largely governed by the thickness of the organic coating that is closely related to reaction time and initial reactant concentrations. Derived from particle size and mass, the effective density increases while dynamic shape factor decreases as the organic coating grows, suggesting a compaction of the soot morphology. As the organic coating grows, the particles become more hygroscopic and have enhanced light scattering and absorption. The second part discusses the potential reactions between amines and some aerosol constituents and alteration of aerosol properties. The reactions between alkylamines and ammonium sulfate/bisulfate have been studied using a low-pressure fast flow reactor coupled to a mass spectrometer at 293 K. Alkylamines react with ammonium sulfate/bisulfate to form alkylaminium sulfates, suggesting the existence of alkylaminium salts in particle phase. We have extended our study to characterize the physicochemical properties of alkylaminium sulfates. The hygroscopicity, thermostability, and density of five representative alkylaminium sulfates have been measured by an integrated aerosol analytical system. All alkylaminium sulfate aerosols show monotonic size growth when exposed to increasing relative humidity. Mixing ammonium sulfate with alkylaminium sulfates lowers the deliquescence point corresponding to ammonium sulfate. Alkylaminium sulfates are thermally comparable to or more stable than ammonium sulfate. The densities of alkylaminium sulfate particles are lower than that of ammonium sulfate. Our results suggest that the organic compounds can effectively alter the composition and properties of atmospheric aerosols, considerably influencing the impacts of aerosols on air quality, climate forcing, and human health.
42

Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models

Salzmann, Marc, Cherian, Ribu, Weser, Hagen January 2014 (has links)
The representation of aerosol processes and the skill in simulating the Asian summer monsoon vary widely across climate models. Yet, for the second half of the twentieth century, the models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) show a robust decrease of average precipitation in the South and Southeast Asian (SSEA) continental region due to the increase of anthropogenic aerosols. When taking into account anthropogenic aerosols as well as greenhouse gases (GHGs), the 15 CMIP5 models considered in this study yield an average June–September precipitation least squares linear trend of −0.20 ± 0.20mm d−1 (50 years)−1, or −2.9%, for all land points in the SSEA region (taken from 75 to 120◦E and 5 to 30◦N) in the years from 1950 to 1999 (multimodel average ± one standard deviation) in spite of an increase in the water vapor path of +0.99 ± 0.65 kg m−2 (50 years)−1 (+2.5%). This negative precipitation trend differs markedly from the positive precipitation trend of +0.29 ± 0.14mm d−1 (50 years)−1, or +4.1%, which is computed for GHG forcing only. Taking into account aerosols both decreases the water vapor path and slows down the monsoon circulation as suggested by several previous studies. At smaller scales, however, internal variability makes attributing observed precipitation changes to anthropogenic aerosols more difficult. Over Northern Central India (NCI), the spread between precipitation trends from individual model realizations is generally comparable in magnitude to simulated changes due to aerosols, and the model results suggest that the observed drying in NCI might in part be explained by internal variability.
43

Nebulization therapy as adjunct to conventional treatment of bovine repiratory disease

Spire, Mark F. January 1978 (has links)
Call number: LD2668 .T4 1978 S693 / Master of Science
44

Studies of interfacial diffusion of partly water-soluble compounds in oil-in-water emulsions

Hengelmolen, Rudy January 1994 (has links)
No description available.
45

Piezoelectric sensors incorporating electrostatic focusing and automated cleaning for personal aerosol monitoring

Wilson, Lester W. January 1996 (has links)
No description available.
46

Factors influencing delivery of and response to nebulised solutions

Lewis, R. A. January 1985 (has links)
No description available.
47

Investigation of the fluid flow around blunt body samplers

Castledine, Andre J. January 1992 (has links)
No description available.
48

The formulation of suspension - type pressurised aerosols using hydrofluoroalkane propellants

McKenzie, Lesley January 1997 (has links)
No description available.
49

Developing models of aerosol representation to investigate composition, evolution, optical properties, and CCN spectra using measurements of size-resolved hygroscopicity

Gasparini, Roberto 16 August 2006 (has links)
A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure size distributions, hygroscopicity, and volatility during the May 2003 Aerosol Intensive Operational Period at the Central Facility of the Atmospheric Radiation Measurement Southern Great Plains site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 µm to 0.600 µm were measured. These measurements, along with backtrajectory clustering, were used to infer aerosol composition and evolution. The hygroscopic growth of the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 µm. Condensation of secondary organic aerosol on nucleation mode particles may be responsible for the minimal growth observed at the smallest sizes. Growth factor distributions of the largest particles typically contained a non-hygroscopic mode believed to be composed of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed-size hygroscopic growth measurements. This model was used to examine three cases in which the sampled aerosol evolved over a period of hours or days. Additionally, size and hygroscopicity information were combined to model the aerosol as a population of multi-component particles. With this model, the aerosol hygroscopic growth factor f(RH), relating the submicron scattering at high RH to that at low RH, is predicted. The f(RH) values predicted when the hygroscopic fraction of the aerosol is assumed to be metastable agree better with measurements than do those predicted under the assumption of crystalline aerosol. Agreement decreases at RH greater than 65%. This multi-component aerosol model is used to derive cloud condensation nuclei (CCN) spectra for comparison with spectra measured directly with two Desert Research Institute (DRI) CCN spectrometers. Among the 1490 pairs of DMA/TDMA-predicted and DRI-measured CCN concentrations at various critical supersaturations from 0.02-1.05%, the sample number-weighted mean R2 value is 0.74. CCN concentrations are slightly overpredicted at both the lowest (0.02-0.04%) and highest (0.80-1.05%) supersaturations measured. Overall, this multi-component aerosol model based on size distributions and size-resolved hygroscopicity yields reasonable predictions of the humidity-dependent optical properties and CCN spectra of the aerosol.
50

A two-stage 100 l/min circumferential slot virtual impactor system for bioaerosol concentration

LaCroix, Daniel Edward 15 May 2009 (has links)
A two -stage circumferential slot virtual impactor aerosol concentrator system has been developed that is designed for nominal operational conditions of a 2 μm AD cutpoint, an aerosol inflow to the first stage of 100 L/min and a minor flow rate from the second stage of 1 L/min. Each unit was tested separately before being combined in the system. However, because of high inter-stage losses, a sheath air system was inserted between the two stages, wherein a small amount of air was injected into the apex of a cone placed on top of the second stage. The sheath air displaced the stagnation point at the apex of the cone and redirected particles into the sampling zone of the second stage unit. The cutpoint particle size of the system was 2.5 μm AD at the nominal flow rate. The dynamic range (ratio of upper limit to the lower limit of aerodynamic particle diameter associated with transmission efficiencies of 50%) was 5.4, and the largest particle size for which the transmission was at least 50% is 13.6 μm AD. When run at 67 L/min, the cutpoint is 4 μm AD and the dynamic range is 3.75; at 150 L/min the cutpoint is 2.05 μm AD and the dynamic range is not less than 4.74. The pressure drop across the system is 685 Pa (2.75 in. H2O). This yields an ideal power consumption of 0.77 watts.

Page generated in 0.0243 seconds