• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the fluid flow around blunt body samplers

Castledine, Andre J. January 1992 (has links)
No description available.
2

Methodology to quantify leaks in aerosol sampling system components

Vijayaraghavan, Vishnu Karthik 15 November 2004 (has links)
Filter holders and continuous air monitors (CAMs) are used extensively in the nuclear industry. It is important to minimize leakage in these devices and in recognition of this consideration, a limit on leakage for sampling systems is specified in ANSI/HPS N13.1-1999; however the protocol given in the standard is really germane to measurement of significant leakage, e.g., several percent of the sampling flow rate. In the present study, a technique for quantifying leakage was developed and that approach was used to measure the sealing integrity of a CAM and two kinds of filter holders. The methodology involves use of sulfur hexafluoride as a tracer gas with the device being tested operated under dynamic flow conditions. The leak rates in these devices were determined in the pressure range from 2.49 kPa (10 In. H2O) vacuum to 2.49 kPa (10 In. H2O) pressure at a typical flow rate of 56.6 L/min (2 cfm). For the two filter holders, the leak rates were less than 0.007% of the nominal flow rate. The leak rate in the CAM was less than 0.2% of the nominal flow rate. These values are well within the limit prescribed in the ANSI standard, which is 5% of the nominal flow rate. Therefore the limit listed in the ANSI standard should be reconsidered as lower values can be achieved, and the methodology presented herein can be used to quantify lower leakage values in sample collectors and analyzers. A theoretical analysis was also done to determine the nature of flow through the leaks and the amount of flow contribution by the different possible mechanisms of flow through leaks.
3

The inline virtual impactor

Seshadri, Satyanarayanan 2007 December 1900 (has links)
A circumferential slot In-line Virtual Impactor (IVI) has been designed using Computational Fluid Dynamics (CFD) simulation tools and experimentally characterized using monodispersed liquid aerosols to validate simulation results. The base design, IVI-100, has an application as a pre-separator for sampling inlets, where the device scalps large particles from the aerosol size distribution. The IVI-100 samples air in at 111 L/min and deliver the fine aerosol fraction in a 100 L/min flow and provide a cutpoint particle size of 10 µm, with a pressure drop of 45 Pa. An inverted dual cone configuration encased inside a tube provides the IVI-100 with a characteristic circumferential slot of width 0.254 mm (0.100 inches) and a slot length of 239 mm (9.42 inches) at the critical zone. The upper cone causes the flow to accelerate to an average throat velocity of 3.15 m/s, while the lower cone directs the major flow toward the exit port and minimizes recirculation zones that could cause flow instabilities in the major flow region. The cutpoint Stokes number is 0.73; however, the cutpoint can be adjusted by changing the geometrical spacing between the acceleration nozzle exit plane and a flow divider. Good agreement is obtained between numerically predicted and experimentally observed performance. An aerosol size selective inlet for bioaerosol and other air sampling applications using an upgraded prototype of IVI-100, mounted inside a BSI-100 inlet shell was tested in an aerosol wind tunnel over a speed range of 2 – 24 km/hr. The BSI-IVI-100 inlet has a cutpoint of 11 µm aerodynamic diameter and delivers the fine fraction at 100 L/m. The geometric standard deviation of the fractionation curve is 1.51 and the performance is not affected by wind speeds. An IVI-350, which is an adaptation of the IVI to be used as a powder fractionator, was designed based on computational simulations, and provides a cutpoint of 3 µm AD, while operating in a total flow rate of 350 L/min. Four Identical IVI -350 units will be operated in parallel to fractionate aerosolized powders in a 1400 L/min flow. An optimized inlet, with a contoured tear-drop shaped insert provides uniform flow to four identical IVI units and prevents powder accumulation in the system entrance.
4

Methodology to quantify leaks in aerosol sampling system components

Vijayaraghavan, Vishnu Karthik 15 November 2004 (has links)
Filter holders and continuous air monitors (CAMs) are used extensively in the nuclear industry. It is important to minimize leakage in these devices and in recognition of this consideration, a limit on leakage for sampling systems is specified in ANSI/HPS N13.1-1999; however the protocol given in the standard is really germane to measurement of significant leakage, e.g., several percent of the sampling flow rate. In the present study, a technique for quantifying leakage was developed and that approach was used to measure the sealing integrity of a CAM and two kinds of filter holders. The methodology involves use of sulfur hexafluoride as a tracer gas with the device being tested operated under dynamic flow conditions. The leak rates in these devices were determined in the pressure range from 2.49 kPa (10 In. H2O) vacuum to 2.49 kPa (10 In. H2O) pressure at a typical flow rate of 56.6 L/min (2 cfm). For the two filter holders, the leak rates were less than 0.007% of the nominal flow rate. The leak rate in the CAM was less than 0.2% of the nominal flow rate. These values are well within the limit prescribed in the ANSI standard, which is 5% of the nominal flow rate. Therefore the limit listed in the ANSI standard should be reconsidered as lower values can be achieved, and the methodology presented herein can be used to quantify lower leakage values in sample collectors and analyzers. A theoretical analysis was also done to determine the nature of flow through the leaks and the amount of flow contribution by the different possible mechanisms of flow through leaks.
5

Evaluation of Personal Aerosol Samplers

Aizenberg, Vitaly Alex January 2000 (has links)
No description available.
6

Environmental Detection and Quantification of Airborne Influenza A Virus in an Elementary School, and its Implications for Student and Community Illness

Coleman, Kristen K. 18 October 2017 (has links)
No description available.

Page generated in 0.0677 seconds