• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The inline virtual impactor

Seshadri, Satyanarayanan 2007 December 1900 (has links)
A circumferential slot In-line Virtual Impactor (IVI) has been designed using Computational Fluid Dynamics (CFD) simulation tools and experimentally characterized using monodispersed liquid aerosols to validate simulation results. The base design, IVI-100, has an application as a pre-separator for sampling inlets, where the device scalps large particles from the aerosol size distribution. The IVI-100 samples air in at 111 L/min and deliver the fine aerosol fraction in a 100 L/min flow and provide a cutpoint particle size of 10 µm, with a pressure drop of 45 Pa. An inverted dual cone configuration encased inside a tube provides the IVI-100 with a characteristic circumferential slot of width 0.254 mm (0.100 inches) and a slot length of 239 mm (9.42 inches) at the critical zone. The upper cone causes the flow to accelerate to an average throat velocity of 3.15 m/s, while the lower cone directs the major flow toward the exit port and minimizes recirculation zones that could cause flow instabilities in the major flow region. The cutpoint Stokes number is 0.73; however, the cutpoint can be adjusted by changing the geometrical spacing between the acceleration nozzle exit plane and a flow divider. Good agreement is obtained between numerically predicted and experimentally observed performance. An aerosol size selective inlet for bioaerosol and other air sampling applications using an upgraded prototype of IVI-100, mounted inside a BSI-100 inlet shell was tested in an aerosol wind tunnel over a speed range of 2 – 24 km/hr. The BSI-IVI-100 inlet has a cutpoint of 11 µm aerodynamic diameter and delivers the fine fraction at 100 L/m. The geometric standard deviation of the fractionation curve is 1.51 and the performance is not affected by wind speeds. An IVI-350, which is an adaptation of the IVI to be used as a powder fractionator, was designed based on computational simulations, and provides a cutpoint of 3 µm AD, while operating in a total flow rate of 350 L/min. Four Identical IVI -350 units will be operated in parallel to fractionate aerosolized powders in a 1400 L/min flow. An optimized inlet, with a contoured tear-drop shaped insert provides uniform flow to four identical IVI units and prevents powder accumulation in the system entrance.

Page generated in 0.0667 seconds