• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Aluminum Powder Metallurgy Alloys for Aerospace Applications

Chua, Allison Sueyi 06 March 2014 (has links)
Currently, there is a high demand for lightweight aerospace materials, driven by the desire to provide enhanced fuel efficiency by reducing vehicular weight. Aluminum alloys are attractive due to their excellent mechanical properties and high strength to weight ratios. Powder metallurgy (PM), which converts metal powder into a high performance product, presents an alternative to traditional forming techniques, which are often unable to provide adequate dimensional tolerances. The challenge is to determine if aluminum PM alloys and technologies can be successfully employed within aerospace applications. This research focuses on the PM processing technologies (die compaction, cold isostatic pressing (CIP), and spark plasma sintering (SPS)) of two alloys, PM2024 and PM7075. Processing parameters were assessed using attributes such as density, hardness, and tensile properties. Both powders showed comparable densities and tensile properties to their wrought equivalents. Ultimately, the groundwork was laid for future research into these alloys and their processing methods.
2

Hot ultrasonically assisted turning of Ti-15V3Al3Cr3Sn : experimental and numerical analysis

Muhammad, Riaz January 2013 (has links)
Titanium alloys have outstanding mechanical properties such as high hardness, a good strength-to-weight ratio, excellent fatigue properties and high corrosion resistance. However, several inherent properties including their low thermal conductivity and high chemical affinity to tool materials impairs severely their machinability with conventional machining techniques. Conventional machining of Ti-based alloys is typically characterized by low depths of cuts and relatively low feed rates, thus adversely affecting the material removal rates during the machining process. Recently, a non-conventional machining technique known as ultrasonically assisted turning (UAT) was introduced to machine modern alloys, in which low-energy, high-frequency vibration is superimposed on the movement of a cutting tool during a conventional cutting process. This novel machining technique results in a multi-fold decrease in the level of cutting forces with a concomitant improvement in surface finish of machined modern alloys. Also, since the late 20th century, machining of wear resistant materials that soften when heated has been carried out with hot machining techniques. In this work, a new hybrid machining technique called Hot Ultrasonically Assisted Turning (HUAT) is introduced for processing of a Ti-based alloy Ti-15V3Al3Cr3Sn. In this technique, UAT is combined with a traditional hot machining technique to gain combined advantages of both schemes for machining of intractable alloys. HUAT of the studied alloy was analysed experimentally and numerically to demonstrate its benefits in terms of reduction in cutting forces over a wide range of industrially relevant speed-feed combinations. Thermal evolution in the cutting process was assessed, and the obtained results were compared with FE simulations to gain knowledge of temperatures reached in the cutting zone. The developed novel turning process appeared to improve dry turning of the Ti alloy with significant reduction of average cutting forces without any substantial metallurgical changes in the workpiece material. Nano-indentation, light microscopy and SEM studies were performed to get an insight into the development of hardness in a zone near the machined surface in the workpiece. Backscatter electron microscopy was also used to evaluate the formation of α-Ti during the novel HUAT. No grain changes or α-precipitation were observed in machined workpieces in conventional and hybrid turning processes. 3D elasto-plastic thermomechanically coupled finite-element models for the orthogonal turning process were developed for conventional turning (CT), hot conventional turning (HCT), UAT and HUAT, followed by a more realistic novel 3D finite-element model for the oblique turning process. These 3D models were used to study the effects of cutting parameters (cutting speed, feed rate and depth of cut, ultrasonic vibration, ultrasonic frequency, rake angle and tool nose radius) on cutting forces, temperature in the process zone and stresses. The later model was used to analyse the effect of vibration and heat on the radial and axial components of cutting forces in HUAT, which was not possible with the developed 3D orthogonal-turning model. Comparative studies were performed with the developed CT, HCT, UAT and HUAT finite-element models and were validated by results from experiments conducted on the in-house prototype and in literature. The HUAT for the Ti-15333 was analysed experimentally and numerically to demonstrate the benefits in terms of a significant reduction in the cutting forces and improvement in surface roughness over a wide range of industrially relevant speed-feed combinations.
3

Développement d’un primaire d’adhésion anticorrosion sans Cr VI pour l’alliage aéronautique Al2024-T3 / Development of an anticorrosive primer without hexavalent chromium for AA2024-T3

Doublet, Aurélien 26 September 2019 (has links)
L’utilisation du chrome hexavalent pour le traitement de surface des matériaux de l’aéronautique est en passe d’être interdite par la réglementation REACH. Dans l’objectif de trouver une solution alternative, PROTEC industrie et le CEA travaillent en collaboration sur le développement d’une nouvelle solution sans-chrome permettant de remplacer les revêtements classiquement utilisés. Le travail de thèse présenté dans ce manuscrit s’inscrit dans le cadre du laboratoire commun MESTREL financé par le programme ANR Labcom, réunissant les deux entités citées ci-dessus. La solution proposée est basée sur le greffage d’un revêtement organique inspiré de la chimie des sels de diazoniums à la surface de l’Al2024-T3, alliage de référence du secteur aéronautique. Cette thèse vise initialement à déterminer les conditions pour lesquelles les propriétés du film greffé se rapprochent le plus de celles de son prédécesseur. Pour cela, des caractérisations spectroscopiques et électrochimiques des films greffés ont été réalisées. Les protocoles de microscopies électrochimiques développés ont notamment permis de sonder le niveau de passivation de la couche. La haute porosité du film greffé, nous a ainsi permis d’imaginer et de développer un système bicouche innovant combinant les propriétés anticorrosion des solutions actuelles aux hautes propriétés d’adhérence du film organique fonctionnalisé. En parallèle, une méthode de dépôt hors-cuve a été développée pour générer un gain économique important et faciliter le traitement de pièces de grandes dimensions. / The use of hexavalent chromium for anticorrosion surface treatments in aeronautics field will soon be banned by the REACH reglementation. Looking for an innovative solution, PROTEC industry and the CEA research center work in collaboration with the aim of developing a chromium free replacement treatment, which can substitute current solution and give competitive results both in adhesion and corrosion protection. The thesis project presented in this manuscript is part of a common laboratory named MESTREL, including the two entities. The proposed solution is based on the grafting of a polymeric film inspired by the diazonium chemistry on an Al2024-T3 surface, reference alloy in the aeronautic field. The principal objective of the thesis is to determinate the best conditions of grafting, -giving similar properties to chromium treatment. To this end, spectroscopic and electrochemical characterizations have been performed. Electrochemical Microscopy protocols are developed to assess the passivation properties of the film The high porosity of the film has allowed to develop a new innovative bilayer process combining anticorrosive properties of current solution and adhesion properties of the functionnal coating. At the same time, an out-of-tank deposition technique is developed. The goal is to enable economic benefits and facilitate treatment of very large aeronautic pieces.
4

Modeling and Analysis for Atmospheric Galvanic Corrosion of Fasteners in Aluminum

Young, Paul S. 29 May 2015 (has links)
No description available.

Page generated in 0.0634 seconds