• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration, caractérisation et modélisation optique d'électrodes transparentes intégrant des nanofils d'Ag pour des applications solaires / Elaboration, caracterization and optical modelling of transparent electrodes imbeddeing silver nanowires for solar applications

Chalh, Malika 05 June 2018 (has links)
Les électrodes transparentes sont intégrées dans de nombreux dispositifs optoélectroniques tels que (les OLED, les cellules photovoltaïques, les écrans tactiles...). De nos jours, l’électrode transparente la plus utilisée est l’oxyde d’indium dopé étain (ITO : Indium Tin Oxide) qui présente une transparence élevée et une faible résistance carrée. Malgré ces propriétés optoélectroniques exceptionnelles, l’ITO présente des inconvénients tels que la rareté de l’indium et sa fragilité qui est incompatible avec les substrats flexibles. Les nanofils d’argent (AgNWs) sont considérés comme une alternative potentielle pour remplacer l’ITO en vue de leur excellentes propriétés optoélectroniques et leur flexibilité. Néanmoins, les AgNWs souffrent de certains inconvénients (adhérence au substrat, rugosité). Dans ce travail nous proposons une structure de type Oxyde/Métal/Oxyde (OMO) en insérant une couche d’AgNWs comme couche métallique entre deux couches de nanoparticules d’oxydes (ZnO, AZO, WO3) pour fabriquer des électrodes tricouches de type ZAZ, AAA et WAW. Ces dernières ont montré transmission élevée combinée à une faible résistance carrée, ce qui leur permet d’être considérées comme des électrodes alternatives à l’ITO. De plus, les électrodes ZAZ et AAA ont été intégrées avec succès dans des cellules solaires organiques. En outre, un outil numérique potentiel utilisant la méthode FDTD (Finite Difference Time Domain) nous permis de confirmer les résultats expérimentaux pour les électrodes ZAZ. Ainsi, l’amélioration de l’absorption au sein de la couche active via l’effet plasmonique des AgNWs a été démontrée également. Finalement, nous avons pu modéliser un réseau semi-aléatoire des AgNWs inséré entre deux couches de ZnO tout en démontrant la différence en transmission entre une couche dense et une en nanoparticules de ZnO. / Transparent Electrodes (TEs) are crucial components of wide variety of optoelectronic devices as (OLEDs, photovoltaic cells, touch screen…). Nowadays, the transparent electrode widely used is Indium Tin Oxide (ITO), due to its good optoelectronic properties. However, it presents some drawbacks such as the indium scarcity and its brittleness which is not compatible with flexible substrates. Silver nanowires (AgNWs) were considered as potential alternative to replace ITO because of their good optical and electrical properties. Although promising, the AgNWs presents some drawbacks, including the poor adhesion to substrate and the surface roughness. In this work, we propose a sandwich structure Oxide/Metal/Oxide (OMO), where the metallic layer is based on AgNWs. We embedded AgNWs between two nanoparticles oxide layers of (ZnO, AZO, WO3) in order to fabricate trilayer electrodes which are ZAZ, AAA, WAW. These trilayer electrodes show a high transmittance and a low sheet resistance, which lead to consider them on of the alternative to the ITO. In addition, the ZAZ and AAA electrodes were successfully integrated in organic solar cells with good photovoltaic performance. Moreover, using the potential numerical method FDTD (Finite Difference Time Domain) we demonstrated a good agreement between the experimental and numerical results for the ZAZ electrodes. Therefore, the enhancement of absorption inside active layer due to the plasmonic effect of AgNWs was also demonstrated. Finally, we can model a randomly network of AgNWs embedded between two layers of ZnO, with investigating the difference between a dense and nanoparticles layer of ZnO.
2

Probing Magnetic And Structural Properties Of Metallic Nanowires Using Resistivity Noise

Singh, Amrita 09 1900 (has links) (PDF)
The main focus of this thesis work has been the study of domain wall (DW) dynamics in disordered cylindrical nanomagnets. The study attempts to accurately quantify the stochasticity associated with driven (temperature/magnetic field/spin-torque) DW kinetics. Our results as summarized below, are particularly relevant with regard to the technological advancement of DW based magnetoelectronic devices. 1. Temperature dependent noise measurements showed an exponential increase in noise mag-nitude, which was explained in terms of thermally activated DW depinning within the Neel-Brown framework. The frequency-dependence of noise also indicated a crossover from nondiffusive kinetics to long-range diffusion of DWs at higher temperatures. We also observed strong collective depinning, which must be considered when implementing these nanowires in magnetoelectronic devices. 2. Our noise measurements were sensitive enough to detect not only the stochasticity in DW propagation (diffusive random walk) but also their nucleation in the presence of magnetic field down to a single DW unit inside an isolated single Ni nanowire. Controlled injection and detection of individual DWs is critical in designing DW based memory devices. 3. The spectral slope of noise was observed to be sensitive to DWkinetics that reveals a creep-like behavior of the DWs at the depinning threshold, and diffusive DW motion at higher spin torque drive. Different regimes of DW kinetics were characterized by universal kinetic exponents. Noise measurements also revealed that the critical current density and DW pinning energy can be significantly reduced in a magnetically coupled vertical ensemble of nanowires. This was attributed to strong dipolar interaction between the nanowires. Our results are particularly important in view of recent proposals for low power consumption magnetic storage devices that rely on DW motion. In all our experiments, the critical magnetic field/current density, required to set the DWs in duffusive kinetics, were found to be much smaller than the reported values for nanostrips. This could be attributed to the circular cross section of nanowires, where massless DWs results in the absence of Walker breakdown and hence in zero critical current density. At present the contribution from the non-adiabaticity, which acts as an effective field and can reduce the crit- ical current density, can not be denied. The main di±culty in quantifying the non-adiabatic spin-torque is that not only does it contain contributions due to non-adiabatic transport but also due to spin-relaxation provided by magnetic impurities or the sources for spin-orbit scattering. Fortunately, in cylindrical nanomagnet, non-adiabaticity does not affect the DW motion. There- fore, cylindrical NWs may be promising candidate for future magnetic storage devices. However, a systematic experimental study of DW dynamics in cylindrical nanomagnets is lacking. In chapter 7, silver nanowires (AgNWs) are shown to be stabilized in fcc or hcp crystal structure, depending on the electrochemical growth conditions. The AgNWs stabilized in hcp crystal structure are shown to exhibit exotic structural properties i.e. ultra low noise level, thermally driven unconventional structural phase transformation, and time dependent structural relaxation. Ultra noise level makes hcp AgNWs suitable for application in nanoelectronics and the structural transformation may be exploited for use in smart materials. Though time resolved transmission electron microscopy and noise measurements provide some understanding of the hcp AgNWs formation, the precise growth mechanism is still not clear. Future scope of the work The results in this thesis provide the groundwork for a good understanding of stochastic DW kinetics in isolated as well as ensemble of magnetic nanocylinders. Some extensions to this work that would help expand and strengthen the results, are listed below; 1. In all the nanocylinders used for our experiments the source of stochasticity in DWkinetics were randomly distributed structural defects. For a controlled injection and detection of DWs between the voltage probes, it would be of great importance to fabricate artificial notches (pinning centers) in the NW. These notches can be fabricated either by using nano-indentation or by a focussed ion beam. 2. To investigate whether DWs in different parts of the nanowire exhibit spatio-temporal correlation, a simultaneous detection of DWkinetics (through noise measurement) between different volage probes needs to be done. If the propagation time of DWs scales with the distance between the voltage probes, we can be confident of our velocity measurement. Then, by recording the DWvelocity as function of eld/current for nanowire (or nanostrip) absence (or presence) of the Walker breakdown can be probed. This would be a significant result for future spintronic devices. With an accurate determination of velocity even non- adiabaticity parameter may be calculated and one can see its effect on DW dynamics. 3. A complete understanding of sustained avalanches at finite magnetic fields, characterized by a high spectral exponent (a>¸ 2:5) in an ensemble of nanowires is still lacking. Per- forming a controlled experiment on a single nanowire, by varying the number of nanowires in the alumina matrix, one can study the chaotic dynamics of DWs in the ensemble in very accurate manner. All the experiments on AgNWs were performed on ensembles. The large change in a as well as noise magnitude in hcp AgNWs could arise from stress relaxation due to the presence of an insulating matrix or structural relaxation, determined by the nanowire growth kinetics. To resolve this issue, time and temperature dependent noise measurements should be performed on single nanowire stabilized in both hcp and fcc crystal structure.

Page generated in 0.0142 seconds