• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • 2
  • Tagged with
  • 29
  • 29
  • 29
  • 22
  • 21
  • 20
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et Étude de Systèmes Conjugués pour le Photovoltaïque Organique

Ripaud, Emilie 10 December 2010 (has links) (PDF)
Les systèmes conjugués sont depuis une vingtaine d'années très étudiés pour leurs propriétés optoélectroniques et leur versatilité synthétique qui permettent leur incorporation dans des composants électroniques organiques. Parmi ceux-ci, les cellules solaires organiques en hétérojonction à base de chromophores donneur et accepteur d'électrons font l'objet d'un intérêt grandissant. Dans ce contexte, le travail présenté porte sur la synthèse et l'étude de systèmes moléculaires conçus pour une incorporation en tant que donneurs d'électrons dans des cellules solaires organiques. Le premier chapitre rappelle l'historique des cellules solaires puis s'attache à décrire en détails les fonctionnements, avantages et limitations des composants organiques. La seconde partie du chapitre est consacrée à la description de cellules solaires " en réseaux interpénétrés " dans lesquelles donneur et accepteur d'électrons sont intimement mélangés avec en particulier l'incorporation de dérivés moléculaires comme donneurs d'électrons dans ces dispositifs. Les deux chapitres suivants sont consacrés aux synthèses et études de composés de la famille de la triphénylamine ( TPA ). Le chapitre deux traite de TPA substituées par des groupes susceptibles d'engendrer de fortes interactions intermoléculaires alors que le chapitre trois s'intéresse à l'amélioration des propriétés spectroscopiques et électroniques par modification structurale des TPA. Dans ces chapitres, la synthèse et les études des produits sont présentées. Le dernier chapitre est consacré à des dérivés du dicétopyrrolopyrrole ( DPP ). Après un rappel bibliographique, les synthèses et propriétés de DPP fonctionnalisés sont présentées.
2

Cellules solaires organiques à base de molécules bio-inspirées / Bio-inspired small molecules for organic solar cells

Archet, Florence 18 December 2018 (has links)
Face à la croissance de la demande énergétique, les énergies alternatives, telles que l’énergie photovoltaïque, représentent des solutions réalistes. Cette dernière nécessite des matériaux efficaces pour la capture des photons et leur conversion en électricité.Les cellules solaires organiques (CSOs) sont basées sur les propriétés semiconductrices de certaines molécules ou de certains polymères π-conjugués. Dans le domaine des CSOs, les efforts de recherche actuels se concentrent selon trois axes : la réduction des coûts, l’augmentation de la durée de vie des cellules solaires et l’augmentation des rendements de conversion photovoltaïque. Les récentsdéveloppements ont conduit à une complexification des architectures des CSOs ainsi que des semi-conducteurs organiques utilisés, induisant une augmentation des coûts de fabrication. Dans une logique de développement économiquement efficace et écologiquement soutenable, il est nécessaire aujourd’hui de se concentrer sur des semi-conducteurs organiques viables économiquement et dont la synthèse est respectueuse de l’environnement. Ce travail doctoral a pour but de développer de nouveaux matériaux semi-conducteurs organiques bio-inspirés et bas coût. Les molécules étudiées présentent une structure donneur-accepteur-donneur. Leur squelette est celui de la curcumine, molécule qui donne sa couleur au curcuma. Le groupement accepteur est un difluorure de bore. Les groupements donneurs quant à eux varient suivant les semi-conducteurs. Les propriétés optoélectroniques de dix-sept dérivés curcuminoïdes ont été étudiées. Plusieurs d’entre eux se sont démarqués : ceux avec des groupements anthracène, ceux avec des dérivés thiophènes, enfin et impact sur les performances photovoltaïques de la formulation de l’encre utilisée pour le dépôt de la couche a été étudié en détail. Différents matériaux accepteurs ont été testés, de même que l’utilisation de mélanges ternaires. Pour l’un de dérivés curcuminoïde en combinaison avec du PC61BM, des rendements supérieurs à 4 % ont été obtenus avec des tensions de circuit ouvert supérieures à 1,0 V. Au regard de la simplicité structurale de ce semi-conducteur, ces résultats figurent à notre connaissance parmi les meilleurs reportés dans la littérature. Les phénomènes photophysiques ont également été étudiés par spectroscopie d’absorption des espèces transitoires. Enfin, le procédé de fabrication a été rapproché des conditions industrielles en éliminant les solvants halogénés utilisés et en travaillant à l’air ambiant. Finalement, bien qu’intéressantes, les propriétés photovoltaïques restent limitées pour une application industrielle du fait de la faible mobilité des trous de ces matériaux. / To face the growing needs in energy, renewable energies like solar photovoltaic represent realistic solutions. Photovoltaic energy requires efficient materials to absorb photons and to convert them into electricity. Organic solar cells (OSCs) are based on semiconducting π-conjugated polymer or small molecules. Current research in this field focuses on three main topics: the reduction of costs, the increase of device lifetime and the increase of power conversion efficiency. This last issue led to an increase in the complexity of OSCs architecture as well as organic semi-conductors, leading to anincrease in manufacturing costs. In order to develop sustainable and eco-friendly processes, it is now important to work on cost effective semi-conductors obtained fromgreen synthetic methodology. The aim of this thesis was to develop new bio-inspired organic semi-conductors. These materials are potentially low cost. Molecules studied present donor-acceptor-donor structure. They have the skeleton of curcumine. Curcumine is a natural yellow dye present in curcuma. Acceptor group is boron difluoride. Donor groups vary depending on the curcuminoid derivative. Optoelectronicproperties of seventeen semi-conductors were studied. Several of them stood out: those with anthracene groups, those with thiophene derivatives, finally and especially, those with triphenylamine groups. For this last family, the impact on the photovoltaic performances of the ink formulation used for deposition has been deeply studied. Several acceptor materials were tested, as well as ternary blend. For one curcuminoid derivative combined with PC61BM, efficiency above 4% has been achieved with open circuit voltage up to 1.0 V. Due to the very simple chemical structure of the donor, this represents one of the best result reported in literature to our knowledge. Transient species were also studied by ultrafast spectroscopy. The fabrication process was also changed to eliminate halogenated solvent and to enable processing in ambient air like in industrial process. Finally, photovoltaic properties observed are interesting. Nevertheless, they are not sufficient for industrial application due to low hole mobility in these materials.
3

Nouveaux polymères π-conjugués pour la conversion photovoltaïque de l'énergie solaire

Bricaud, Quentin 22 October 2008 (has links) (PDF)
Ce travail porte sur la synthèse de nouveaux polymères conjugués à base de thiophène et leur utilisation comme matériaux actifs donneurs dans des cellules photovoltaïques organiques. Après une introduction exposant les concepts de base de la conversion photovoltaïque, une première partie est dédiée à la synthèse et la caractérisation de polymères intrinsèquement régio-réguliers obtenus par oxydation chimique à partir de motifs 3,3''-dialkyl-2,2':5',2''-terthiophènes. La seconde partie est consacrée à l'élaboration de polythiophènes régio-réguliers, analogues au poly(3-hexylthiophène) P3HT. Les polymères dont les chaînes substituantes incorporent des fonctions éther, ont été obtenus par une réaction de métathèse de Grignard (GRIM). La dernière partie porte sur la synthèse de polymères Donneur-Accepteur à gap réduit obtenus par condensation de Knoevenagel. Dans tous les cas, les polymères synthétisés ont été incorporés dans des cellules solaires afin d'évaluer leur potentiel pour la conversion photovoltaïque.
4

Corrélation entre les propriétés optiques, la structure électronique et la morphologie des semi-conducteurs organiques pi-conjugués / Correlation between optical properties, electronic structure and morphology of pi-conjugated organic semiconductors

Bencheikh, Fatima 07 December 2015 (has links)
Le développement de la technologie des cellules photovoltaïques organiques nécessite des compétences diverses liées à l’ingénierie moléculaire, à l’ingénierie des interfaces, au contrôle et à la caractérisation de la morphologie des films, à l’optimisation de la structure du dispositif et à la compréhension de la photo-physique des matériaux utilisés. Dans ce contexte, le travail présenté dans cette thèse contribue à la compréhension des propriétés photo-physiques des matériaux organiques π-conjugués et propose des outils de caractérisations optiques pour le suivi de la morphologie de ces matériaux. Dans un premier temps, une méthodologie rigoureuse de détermination des indices optiques des films organiques par ellipsométrie a été proposée. Les modèles utilisés en ellipsométrie ont ainsi été choisis en tenant compte des propriétés physiques des matériaux organiques π-conjugués ce qui a permis de remonter à la structure électronique de dérivés de fullèrenes (PC60BM et PC70BM). Dans un second temps, nous avons associé des données ellipsométriques à des mesures complémentaires d’absorbance et de photoluminescence dans le cas de deux copolymères (PTB7 et PTB7-Th) en films et en solutions afin d’isoler les interactions inter et intra-chaînes. Nous avons démontré que la photo-physique de ces copolymères diffère de celle du P3HT. Nous avons montré que même en solution dans le chlorobenzène, le PTB7 et le PTB7-Th s'agrègent fortement. Ces agrégats, de type H, se cassent plus facilement dans les solutions de chlorobenzène à base de PTB7-Th que dans celles à base de PTB7. / The development of organic photovoltaic cell technology requires various skills related to the molecular engineering, interface engineering, controlling and characterizing the morphology of the films, device structure optimization and understanding of photophysics of the materials. In this context, the work presented in this thesis contributes to the understanding of the photophysical properties of π-conjugated organic materials and propose optical characterizations tools for probing the morphology of these materials. First, a rigorous methodology for determining refractive indices of organic films by ellipsometry has been proposed. The models used in ellipsometry have been chosen by taking into account the physical properties of π-conjugated organic materials which allow the determination of the electronic structure of fullerene derivatives (PC60BM and PC70BM). Secondly, we associated ellipsometric data to complementary measurements of absorbance and photoluminescence in the case of two copolymers (PTB7 and PTB7-Th) in films and solutions in order to isolate inter and intra-chain interactions. We have demonstrated that the photophysics of these copolymers differs from the P3HT. We have shown that even in solution in chlorobenzene, the PTB7 PTB7-Th aggregate strongly. These aggregates, H-type, break more easily in the chlorobenzene solutions based of PTB7-Th as in those based on PTB7.
5

Structure électronique et stabilité de matériaux pour le photovoltaïque organique / Electronic structure and stability of materials for organic photovoltaic

Tournebize, Aurélien 15 December 2015 (has links)
Ce travail de thèse a été consacré à l’étude de la stabilité dans différents milieux des matériaux constitutifs de la couche active des cellules solaires organiques. Les deux objectifs principaux étaient premièrement d’approfondir la compréhension sur certains mécanismes complexes intervenant dans la couche active, et deuxièmement d’étudier les processus de dégradation intervenant spécifiquement aux interfaces de la couche active au sein de la cellule. La première partie de ce mémoire est consacrée à l’étude de la dégradation photochimique et thermique de la couche active des cellules solaires en faisant varier le matériau polymère qui la constitue. La deuxième partie est dédiée au rôle d’un troisième composant de la couche active que peut être la présence d’additifs résiduels provenant de la mise en forme, ou d’un additif stabilisant ajouté à dessein. La troisième partie est consacrée au processus de délamination susceptible d’intervenir à l’interface couche active / couche transporteuse de trous. Enfin, une dernière partie concerne l’étude de l’alignement des niveaux énergétiques entre la molécule de C60 et divers substrats transporteurs d’électrons. L’influence de la lumière et de la température sur les propriétés d’interface couche active / couche transporteuse d’électrons est également reportée. / This word was devoted to the stability in various conditions of materials used in the active layer of organic solar cells. The main goals of this work were first to provide deeper understanding about complex mechanisms occurring in the active layer and second to investigate interfacial degradation pathways involving the active layer. A first part was dedicated to the photo and thermal stability of the polymer blend materials which constitute the active layer of the solar cells. A second section focused on the role of the third component of the active layer which can be undesired residual additives coming from the processing or the desired insertion of a stabilizer additive. A third part concerned the delamination issue which takes place at the active layer / hole transporting layer interface. Finally, a last section was devoted to the energy level alignment between the C60 molecules and various electron transporting substrates. The photo and thermal stability of the active layer / electron transporting layer interface was also studied in this section.
6

Identification of the degradation mechanisms of organic solar cells : active layer and interfacial layers / Identification des mécanismes de dégradation des cellules solaires organiques : couche active et couches interfaciales

Fraga Dominguez, Isabel 09 December 2015 (has links)
La faible durée de vie des cellules solaires organiques constitue un frein à leur développement commercial. Dans ce contexte, ce travail de thèse a été consacré à l’amélioration de la résistance mécanique des cellules d’une part, et d’autre part à l’étude de leur stabilité chimique sous l’impact de la lumière. Concernant le premier axe de recherche, nous avons proposé la synthèse de nouveaux copolymères à blocs (P3HT-b-P(R)SS) susceptibles d’améliorer l’adhésion entre la couche active (P3HT:PCBM) et la couche qui transporte les trous (PEDOT:PSS) dans des dispositifs inverses. Puis, concernant le second axe de recherche, à savoir l’amélioration de la résistance à la lumière de la couche active des cellules, nous avons élucidé les mécanismes de dégradation des polymères et identifié celles de leurs propriétés physico-chimiques impactant leur stabilité. En combinant techniques analytiques et modélisation, il a tout d’abord été possible d’identifier les points faibles d’un polymère modèle, le Si-PCPDTBT. Puis, dans l’objectif d’établir une relation structure-stabilité, l’effet de la variation systématique du squelette conjugué et de la chaîne latérale du polymère a été étudié. Finalement, une analyse multi-échelle a été mise en oeuvre, allant de la stabilité de la couche active jusqu’à celle de la cellule solaire correspondante. Il a alors été montré qu’en choisissant judicieusement les matériaux de la couche active, les couches interfaciales, l’architecture et l’encapsulation des cellules, il était tout à fait possible d’atteindre des durées de vie supérieures à trois ans sans perte significative de performance électrique des dispositifs. / The commercial application of Organic Solar Cells is limited by their short operational lifetimes. In this context, this work has been devoted to the improvement of both the mechanical resistance of these devices and their chemical stability when exposed to light. Concerning the former, the synthesis of P3HT-b-P(R)SS block copolymers as adhesive materials has been proposed to improve adhesion between the active layer (P3HT:PCBM) and the hole transport layer (PEDOT:PSS) in inverted devices. In order to improve the photochemical resistance of the active layer, the second main objective of this project was to identify both polymer degradation pathways and the properties determining polymer stability. Firstly, analytical techniques and modelling have been employed to identify the weak structural points in model low bandgap polymer, Si-PCPDTBT. Then, a series of polymers with systematically modified backbones and/or alkyl side chains has been studied with the aim of establishing a relationship between chemical structure and stability. Finally, multiscale analysis was undertaken on the degradation of solar cells, going from the stability of separate active layers to that of complete devices. It was shown that judicious selection of device layers, architectures, and encapsulation materials, can lead to operational lifetimes over three years with no efficiency losses.
7

Copolymères à grande largeur de bande interdite contenant des quinoxalines : nouveaux matériaux pour les cellules solaires organiques à hétérojonction / High band gap copolymers based on quinoxaline units : new materials for the heterojunction organic solar cells

Caffy, Florent 30 March 2016 (has links)
Une alternative aux énergies fossiles est le domaine du photovoltaïque organique qui a récemment commencé son transfert technologique des laboratoires de recherche vers l’industrie. De nombreux efforts de recherche sont réalisés sur les matériaux et les procédés pour augmenter les performances des cellules solaires organiques. Dans ce contexte, ce travail présente une étude complète allant de la conception de nouveaux polymères donneurs d’électrons à grande largeur de bande interdite à leur caractérisation en dispositifs photovoltaïques. La principale caractéristique recherchée a été de diminuer le niveau énergétique HOMO des polymères pour augmenter la tension en circuit ouvert des dispositifs photovoltaïques. L’approche « donneur-accepteur » a été utilisée pour obtenir les propriétés désirées. Des polymères comportant des unités pauvres en électrons, quinoxaline ou dithienoquinoxaline, et des unités riches en électrons, dibenzosilole ou carbazole, ont été synthétisés par couplage de Suzuki ou par hétéroarylation directe. Des masses molaires allant jusqu’à 56 kg.mol-1 ont été obtenues. Le motif quinoxaline a été décliné sous forme de plusieurs molécules substituées par des atomes de fluor sur le benzène ou par des groupements thiophènes, bithiophènes et terthiophènes sur la partie pyrazine. Des espaceurs thiophènes ou thiazoles ont été utilisés pour relier l’unité riche en électrons et l’unité pauvre en électrons. Les relations entre les modifications structurales et les propriétés structurales et optoélectroniques des polymères ont été analysées. Les propriétés optiques ont été étudiées par spectroscopie UV-visible et par spectroscopie de fluorescence et ont montré une absorption allant jusqu’à 550 nm pour les polymères à motifs dithienoquinoxaline-dibenzosilole, 650 nm pour les polymères à motifs quinoxaline-dibenzosilole et 700 nm pour la famille quinoxaline-carbazole. Ces valeurs correspondent à des largeurs de bande interdite comprises entre 1,8 eV et 2,3 eV. Les niveaux énergétiques HOMO et LUMO des polymères ont été déterminés par électrochimie. Tous les polymères possèdent des niveaux énergétiques HOMO inférieurs à -5,0 eV. Les atomes de fluor et les espaceurs thiazoles ont permis d’abaisser les niveaux énergétiques HOMO des polymères jusqu’à -5,69 eV. Les structures des polymères ont été modélisées par DFT et étudiées par diffraction des rayons X. Les mobilités des trous des polymères ont été mesurées en transistor organique à effet de champ, des valeurs atteignant 9,0. 10 3 cm.V 1.s 1 ont été atteintes. Les polymères ont été testés en dispositifs photovoltaïques selon une architecture standard à hétérojonction volumique en mélange binaire et en mélange ternaire. En mélange avec le PC71BM ou l’IC61BA, ces polymères ont permis d’atteindre des tensions en circuit ouvert entre 0,65 V et 1,05 V et des rendements de conversion photovoltaïque jusqu’à 5,14 % sur une surface active de 0,28 cm2. Les morphologies des couches actives ont été étudiées par AFM afin de comprendre en détail les paramètres de fonctionnement des cellules obtenues. Les polymères présentés dans cette étude ont été utilisés dans des cellules solaires à mélange ternaire présentant de bonnes performances. Certains polymères ont été testés dans des photocathodes pour la production d’hydrogène et ont permis d’obtenir une amélioration du potentiel de réduction par rapport à celui obtenu avec les photocathodes à base de P3HT. Enfin, compte tenu de leurs propriétés optoélectroniques et de leurs performances photovoltaïques certains de ces polymères devraient pouvoir être employés de manière avantageuse en sous cellules de dispositifs tandem en remplacement du P3HT par exemple. / An alternative to fossil fuels are the organic photovoltaic cells which have recently started their technological transfer from research laboratories to industry. Many research efforts have been made on the modification of materials and processes to increase the performance of organic solar cells. In this context, this work presents a comprehensive study from the design of new electron-donor high band gap polymers to their characterisation in photovoltaic devices. The main requirement was to decrease the HOMO energy level of the polymers in order to increase the open circuit voltage of the solar cells. The "push-pull" approach was used to obtain the desired properties. Polymers with quinoxaline or dithienoquinoxaline as electron-deficient units and dibenzosilole or carbazole as electron-rich units were synthesized by Suzuki coupling or by direct heteroarylation. Molecular weights up to 56 kg.mol 1 were obtained. The electron-withdrawing unit quinoxaline was substituted by fluorine atoms on the benzene moiety and by thiophene, bithiophene and terthiophene group on the pyrazine moiety. Thiophenes or thiazoles were used as spacers to link the electron-donating and the electron-withdrawing units. The relationship between the structural modification of the polymers and their optoelectronic properties were analysed. The optical properties were studied by UV-visible spectroscopy and fluorescence spectroscopy. Whereby it appears that polymers with dithienoquinoxaline-dibenzosilole units showed an absorption up to 550 nm and polymers with both quinoxaline-dibenzosilole units and quinoxaline-carbazole units showed an absorption up to 650-700 nm respectively. The corresponding optical band gaps were found to range from 1.8 eV to 2.3 eV. The HOMO and LUMO energy levels of the polymers were determined by electrochemistry. All polymers exhibited HOMO energy levels below -5.0 eV. Fluorine atoms and thiazole spacers significantly lowered the HOMO energy levels of the polymers up to -5.69 eV. DFT was used to model the polymer structures. X-ray diffraction was used to analyse the distances between the polymer chains. Hole mobilities were measured in organic field effect transistors and values of up to 9.0 x 10 3 cm2.V-1.s-1 were obtained. The polymers were tested in organic photovoltaic devices according to a standard bulk heterojunction structure in binary and ternary mixtures. In a blend with PC71BM or IC61BA, these polymers have led to open circuit voltages ranging from 0.65 V to 1.05 V and to power conversion efficiencies of up to 5.14 % on a surface area of 0.28 cm2. The active layer morphologies were studied by AFM. The polymers presented in this work were used in ternary blend solar cells. Some polymers were tested in photocathodes for hydrogen evolution and showed an improvement of the reduction potential compared to that of the photocathodes based on P3HT. Owing to their optoelectronic properties and their photovoltaic properties in standard device configurations, some of the materials developed in this study appear as valuable materials for future developments of organic tandem solar cells.
8

Elaboration de couches minces d'oxydes transparents et conducteurs par spray cvd assiste par radiation infrarouge pour applications photovoltaÏques

Garnier, Jérôme 16 December 2009 (has links) (PDF)
Les oxydes métalliques sont des matériaux pouvant présenter la double propriété d'avoir une haute conductivité électrique et une bonne transparence dans le domaine du visible. Ils sont appelés « oxydes transparents et conducteurs », TCO. Le plus utilisé de ces matériaux est l'oxyde d'indium dopé étain (ITO). L'indium est un élément rare et cher qui avec la demande croissante de l'industrie des écrans plats en ITO, a vu son prix s'envoler. De nombreuses recherches sont basées sur le besoin de trouver un challenger. Des candidats tels que l'oxyde de zinc ou l'oxyde d'étain s'avèrent prometteurs. Pour déposer ces matériaux en couches minces, différentes techniques peuvent être utilisées. Nous avons choisi une technique appelée Spray-CVD car elle présente l'avantage d'avoir des dépôts de qualités avec la réaction de CVD et la facilité de manipulation des précurseurs avec le spray. Pour résumer, c'est une technique simple et économique. La particularité de cette étude est l'utilisation de lampes infrarouges comme chauffage de notre système. L'association de la technique de Spray-CVD et des lampes infrarouges est unique à notre connaissance. Nous avons appelé l'ensemble : IRASCVD (InfraRed Assisted Spray Chemical Vapor Deposition). Afin de déposer des couches compétitives de TCO avec notre technique, deux stratégies ont été déployées. La première consiste à la réalisation d'un réacteur expérimental de Spray-CVD au sein de notre laboratoire. Des films minces d'oxyde d'étain non dopé et dopé au fluor ont été étudiés ainsi que l'optimisation des paramètres de dépôts. Ces couches ont enfin été utilisées en tant qu'électrodes transparentes pour cellules solaires organiques. L'ensemble de cette étude a permis de valider les dépôts de TCO par IRASCVD. La deuxième partie de l'étude consiste à l'utilisation d'un réacteur R&D basé sur le même principe de Spray-CVD. Ce réacteur a permis le dépôt de films minces d'oxyde de zinc non dopé et dopé aluminium. Une attention particulière a été portée à l'influence des infrarouges sur les propriétés des TCO. Ces dépôts ont été comparés avec ceux réalisés avec un chauffage classique. Cette étude souligne l'impact des infrarouges sur les films minces de TCO.
9

Nanotubes de carbones semi-conducteurs pour cellules solaires organiques

Darchy, Léa 09 October 2013 (has links) (PDF)
Les nanotubes de carbone (NTC) constituent un matériau prometteur pour l'électronique organique que ce soit comme conducteurs ou semi-conducteurs. Cependant, les applications des NTC semi-conducteurs sont plus longues à voir le jour car les NTC semi-conducteurs sont synthétisés en mélange avec des NTC métalliques. L'approche de notre laboratoire vise à supprimer la conductivité des NTC métalliques grâce à une fonctionnalisation chimique et sélective afin d'éviter la séparation des deux types de NTC. Cette étude a consisté à adapter et utiliser les NTC semi-conducteurs obtenus par fonctionnalisation dans la matrice active de cellules solaires organiques. La démarche s'est organisée en quatre temps avec tout d'abord la purification des NTC en grande quantité pour produire un matériau abondant en solution et avec l'adaptation de la fonctionnalisation chimique sélective des NTC métalliques. La fonctionnalisation par le diazoéther a permis d'obtenir une sélectivité supérieure à 15 contre 4 à 10 avec les réactifs diazonium et diazoester. Dans un deuxième temps, l'étude physicochimique des composites NTC-matériau donneur (P3HT ou oligomère QTF8) a mis en évidence une forte affinité et une structuration particulière du matériau donneur autour des NTC. Enfin, l'effet de l'incorporation de NTC fonctionnalisés et de leur orientation dans le composite a été étudié en configuration transistors et cellules solaires organiques. L'intégration des NTC dans des cellules à hétérojonction en volume a notamment conduit à la conception d'une nouvelle configuration de cellule solaire plus appropriée pour l'orientation électrique.
10

Synthèse d'oligomères et de polymères enrichis en porphyrines pour la conversion de l'énergie solaire / Synthesis of oligomers and polymers doped with porphyrins for solar energy conversion

Bucher, Léo 20 April 2017 (has links)
Le projet de cette thèse consistait à élaborer de nouveaux matériaux donneurs d’électrons pour les cellules solaires organiques. Cette technologie photovoltaïque émergente en plein essor a d’ores et déjà atteint la limite d’efficacité lui permettant d’être industrialisée et commercialisée à grande échelle. Le faible coût de production des dispositifs photovoltaïques organiques les rendent compétitives vis-à-vis des technologies inorganiques déjà bien implantées. Mais leur plus gros avantage est surement leur légèreté et leurs propriétés mécaniques qui les rendent très souples. Elles devraient donc certainement avoir un rôle majeur à jouer dans le futur en complément des cellules solaires classiques, avec une utilisation pour des applications spécifiques. Nous avons ainsi développé des polymères en utilisant des chromophores réputés pour leurs propriétés photophysiques : les porphyrines, les BODIPY et les dicétopyrrolopyrroles. Ces différentes unités absorbent intensément la lumière, ce qui les rend adéquates pour être utilisées pour la conversion de l’énergie solaire en électricité. En concevant un design original et adapté à cette application, nous avons ainsi obtenu plusieurs nouveaux polymères prometteurs. Nous avons ensuite pu étudier leurs propriétés électrochimiques et électroniques, ainsi que leurs caractéristiques photophysiques. Pour cela nous avons utilisé de nombreux outils (caméra streak, absorption transitoire femtoseconde, etc.) afin de comprendre en détails leur propriétés d’absorption et de luminescence. Ces informations nous ont permis de pouvoir ensuite comprendre leur comportement une fois intégrés dans la couche active des dispositifs photovoltaïques. En effet, le mécanisme de fonctionnement pour la création d’un courant électrique met en jeu des transferts d’électrons ultrarapides (∼50 fs) vers un accepteur d’électron. Il est alors crucial de pouvoir comprendre et contrôler les paramètres pouvant influencer l’efficacité de ces transferts et la stabilisation des charges qui en résultent, pour pouvoir finalement mener à des rendements de conversion de l’énergie lumineuse élevés. / The aim of this thesis was to elaborate new electron donor materials for organic solarcells. This emerging photovoltaic technology is rapidly expanding, and has yet already reached the limit for its large-scale commercialization. The low manufacturing cost of organic photovoltaic devices make then competitive face to well-established inorganic technologies. Their biggest advantage is their weight and their mechanical properties which make them flexible. They should play a key role in future as a complement to classic solar cells, with their use in specific applications. We developed polymers by using different chomophores, well-known for their interesting photophysical properties: the porphyrin, the BODIPY and the diketopyrrolopyrrole. All these units intensively absorb the light, making them perfect candidates to be used to convert sunlight to electricity. By designing appropriate structures for this application, we synthesized several new promising polymers. Afterward, we studied their electrochemical and electronic properties, as well as their photophysics. We used powerful tools (streak camera, transient absorption, etc.) in order to understand in details their absorption and luminescence properties. These results enabled us to further understand their behavior once inside the active layer of photovoltaic devices. Indeed, the mechanism for the electric current creation involves ultrafast electron transfers (∼50 fs) toward electron acceptor. It is of utmost importance to understand and control parameters that could affect the electron transfer efficiency and the resulting charge stabilization, to finally lead to better power conversion efficiencies.

Page generated in 0.4826 seconds