Spelling suggestions: "subject:"agamidae"" "subject:"bramidae""
1 |
Late Quaternary Dragon Lizards (Agamidae: Squamata) from Western AustraliaRej, Julie 01 May 2017 (has links)
Fossil Agamidae from Western Australia have been the subject of limited study. To aid in fossil agamid identification, Hocknull (2002) examined the maxilla and dentary of several extant species from Australia and determined diagnostic characters for various species groups. In the study here, fossil agamids from two localities in Western Australia, Hastings Cave and Horseshoe Cave, were examined, grouped, and identified to the lowest unambiguous taxonomic level. Morphometric analyses were conducted to compare morphotypes, and find additional diagnostic characters. From Hastings Cave there were two maxilla morphotypes and three dentary morphotypes. Based on identifications, taxa present at this locality were Pogona and Ctenophorus. Horseshoe Cave contained three maxilla morphotypes and two dentary morphotypes; taxa present were Pogona, Tympanocryptis, and Ctenophorus. Morphometric analyses showed separation between groups; however, the dentary morphotype separation was not as clear. Each morphotype identification matched a species in the respective localities today, but identifications are cautious.
|
2 |
Niche Modeling for the Genus Pogona (Squamata: Agamidae) in Australia: Predicting Past (Late Quaternary) and Future (2070) Areas of Suitable HabitatRej, Julie E., Joyner, T. Andrew 01 January 2018 (has links)
Background: As the climate warms, many species of reptiles are at risk of habitat loss and ultimately extinction. Locations of suitable habitat in the past, present, and future were modeled for several lizard species using MaxEnt, incorporating climatic variables related to temperature and precipitation. In this study, we predict where there is currently suitable habitat for the genus Pogona and potential shifts in habitat suitability in the past and future. Methods: Georeferenced occurrence records were obtained from the Global Biodiversity Information Facility, climate variables (describing temperature and precipitation) were obtained from WorldClim, and a vegetation index was obtained from AVHRR satellite data. Matching climate variables were downloaded for three different past time periods (mid-Holocene, Last Glacial Maximum, and Last Interglacial) and two different future projections representative concentration pathways (RCPs 2.6 and 8.5). MaxEnt produced accuracy metrics, response curves, and probability surfaces. For each species, parameters were adjusted for the best possible output that was biologically informative. Results: Model results predicted that in the past, there was little suitable habitat for P. henrylawsoni and P. microlepidota within the areas of their current range. Past areas of suitable habitat for P. barbata were predicted to be similar to the current prediction. Pogona minor and P. nullarbor were predicted to have had a more expansive range of suitable habitat in the past, which has reduced over time. P. vitticeps was predicted to have less suitable habitat in the past when examining the region of their known occurrence; however, there was predicted growth in suitable habitat in Western Australia. Both 2070 models predict a similar distribution of habitat; however, the model produced using the 2070 RCP 8.5 climate change projection showed a larger change, both in areas of suitable habitat gain and loss. In the future, P. henrylawsoni and P. microlepidota might gain suitable habitat, while the other four species could possibly suffer habitat loss. Discussion: Based on the model results, P. henrylawsoni and P. microlepidota had minimal areas of suitable habitat during the Last Glacial Maximum, possibly due to changes in tolerance or data/model limitations, especially since genetic analyses for these species suggest a much earlier emergence. The predicted late Quaternary habitat results for all species of Pogona are conservative and should be compared to the fossil record which is not possible at the moment due to the current inability to identify fossil Pogona to the species level. P. nullarbor and P. vitticeps future models predict substantial habitat loss. P. nullarbor could potentially be considered vulnerable in the present since it already has a restricted range, and a conservation plan may need to be considered.
|
Page generated in 0.0218 seconds