Spelling suggestions: "subject:"agestructured models"" "subject:"estructured models""
1 |
Spatial spread of rabies in wildlifeJanuary 2013 (has links)
abstract: Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions. / Dissertation/Thesis / Ph.D. Mathematics 2013
|
2 |
Perturbations singulières des systèmes dynamiques en dimension infinie : théorie et applications / Infinite Dimensional Singularly Perturbed Dynamical Systems : Theory and ApplicationsSeydi, Ousmane 22 November 2013 (has links)
L’objectif de cette thèse est d’étudier et de donner des outils pour la compréhension des problèmes de perturbations singulières pour des modèles épidémiques et des problèmes de dynamiques de populations. Les modèles considérés sont des équations structurées en âge qui peuvent dans certains cas se réécrire comme des équations à retard. L’étude de ces classes d’exemples s’est faite avec succès et a permis de comprendre et de mettre en évidence toute la complexité et l’étendue de ces problèmes. Comme on peut le remarquer dans la littérature, l’une des clés fondamentales à la compréhension de ces problèmes est l’étude des variétés normalement hyperboliques en dimension infinie que nous avons largement étudiées dans cette thèse. L’approche utilisée est la méthode de Lyapunov-Perron. Ce qui nous a amené à étudier les problèmes de persistance et d’existence de trichotomie (dichotomie) exponentielle qui sont des éléments fondamentaux dans l’utilisation de cette méthode. / In this thesis we aim to give tools to understand singular perturbations in epidemic model sand population dynamic models. We study some singularly perturbed delay differential equation which does not enter into the class frame work of geometric singular perturbation for delay differential equations. An example of singularly perturbed age structured model is also studied. The study of these examples allowed us to understand and highlight some complexities of these problems. One of the main tools in understanding such questions is the normally hyperbolic manifolds theory which is our central focus in this thesis. The approach used here is the Lyapunov-Perron method. Therefore the problems of persistence and existence of exponential trichotomy (dichotomy) are also stressed since there are one of the mainingredients of this method.
|
Page generated in 0.0628 seconds