Spelling suggestions: "subject:"cogentes cognitivo"" "subject:"aagentes cognitivo""
1 |
Contribuições para a área de inteligência artificial baseadas em uma abordagem holísticaUliana, Policarpo Batista January 2002 (has links)
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Elétrica. / Made available in DSpace on 2012-10-20T02:06:32Z (GMT). No. of bitstreams: 1
196000.pdf: 935398 bytes, checksum: 8c17bab50d24e6b268f620e54bfc0b02 (MD5) / Na presente tese de doutorado três novas contribuições para a área de inteligência artificial são apresentadas. A primeira contribuição é uma metodologia para definição de escalas para medição de parâmetros relacionados com o grau de "inteligência" de agentes cognitivos naturais e artificiais. Esse tipo de escala possibilita a quantificação numérica de certos tipos de "inteligência" . A segunda contribuição deste trabalho é um novo modelo de processamento baseado em estruturas denominadas "Esquemas de Transição". Esse modelo quebra o paradigma tradicional de processamento de sinais, não fazendo distinção entre entradas e saídas. O modelo permite a hierarquização das estruturas de controle de um agente cognitivo, que podem ser treinadas separadamente, viabilizando o aprendizado rápido de processos bastante complexos, que não são praticamente exeqüíveis com os modelos tradicionais. A terceira contribuição é um novo modelo de memória denominado memória associativa holográfica. Essa memória apresenta características similares às da memória humana. Estes resultados são frutos de uma abordagem holística na qual, além das áreas tradicionais de engenharia e computação, buscamos subsídios nas áreas de ciências humanas de psicologia e filosofia, através do modelo construtivista de Jean Piaget e o modelo semiótico de Charles Pierce.
|
2 |
Desenvolvimento artificial autônomo de um grafo sensório-motor auto-organizável. / Artificial autonomous development of a self-organized sensorimotor graph.Muñoz, Mauro Enrique de Souza 02 February 2016 (has links)
A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto. / In artificial intelligence some cognitive agent models based on Jean Piaget\'s intelligence development theory have been proposed. Although the proposed models implement some fundamental aspects of this theory, like the cognitive schema struture, they do not consider the symbol grounding problem. Therefore, they are not concerned about the theoretical aspects that lead to the autonomous aquisition of the basic semantics needed by the cognitive organization of the agent\'s external world, as for the object concept aquisition. A computational cognitive scheme model inspired on Piaget\'s theory of the sensorimotor intelligence is presented. The scheme is autonomously built by computational mechanisms using principles considering the symbol grounding problem. The proposed scheme model uses sensory-motor situations to perceive, capture and store the finest grain deterministic causal relations. These causal relations are then expanded in time and space by more complex computational structures using the first ones. Those complex structures itselves are also designed in a way they can be used by more complex structures, expanding even further the causal relations in time and space. The proposed scheme model is implemented by an artificial neural network using feedforward architecture. The neural network output layer units progressively organized to compose a sensory-motor graph. Some known computational mechanisms from artificial inteligence were modified to fit to the zero semantic and the autonomous mental development paradigms, conceived in this work as the premises to handle the symbol grounding problem. The scheme model inspired by Piaget\'s theory implemented by the proposed self organizing sensorimotor graph in conjunction with the computational principles used, goes toward to the artificial autonomous cognitive development of the object concept.
|
3 |
Desenvolvimento artificial autônomo de um grafo sensório-motor auto-organizável. / Artificial autonomous development of a self-organized sensorimotor graph.Mauro Enrique de Souza Muñoz 02 February 2016 (has links)
A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto. / In artificial intelligence some cognitive agent models based on Jean Piaget\'s intelligence development theory have been proposed. Although the proposed models implement some fundamental aspects of this theory, like the cognitive schema struture, they do not consider the symbol grounding problem. Therefore, they are not concerned about the theoretical aspects that lead to the autonomous aquisition of the basic semantics needed by the cognitive organization of the agent\'s external world, as for the object concept aquisition. A computational cognitive scheme model inspired on Piaget\'s theory of the sensorimotor intelligence is presented. The scheme is autonomously built by computational mechanisms using principles considering the symbol grounding problem. The proposed scheme model uses sensory-motor situations to perceive, capture and store the finest grain deterministic causal relations. These causal relations are then expanded in time and space by more complex computational structures using the first ones. Those complex structures itselves are also designed in a way they can be used by more complex structures, expanding even further the causal relations in time and space. The proposed scheme model is implemented by an artificial neural network using feedforward architecture. The neural network output layer units progressively organized to compose a sensory-motor graph. Some known computational mechanisms from artificial inteligence were modified to fit to the zero semantic and the autonomous mental development paradigms, conceived in this work as the premises to handle the symbol grounding problem. The scheme model inspired by Piaget\'s theory implemented by the proposed self organizing sensorimotor graph in conjunction with the computational principles used, goes toward to the artificial autonomous cognitive development of the object concept.
|
Page generated in 0.0871 seconds