Spelling suggestions: "subject:"aggregation off nanoparticles"" "subject:"aggregation oof nanoparticles""
1 |
Interactions between titanium dioxide nanoparticles and algal cells at moderate particle concentrationLin, Ming-Yu. January 2008 (has links)
Thesis (M.C.E.)--University of Delaware, 2008. / Principal faculty advisor: Chin-Pao Huang, Dept. of Civil and Environmental Engineering. Includes bibliographical references.
|
2 |
Modifikace nanočástic pomocí tubulárního naprašovacího systému / Modification of nanoparticles by means of tubular sputtering systemKretková, Tereza January 2018 (has links)
The aim of this work is to prepare heterogeneous nanoparticles which means nanoparticles composed of more than one material. Our approach lies in in-flight modification of primary nanoparticles in the tubular sputtering system. Our tubular system contains copper target and we deposit copper onto the flying primary nanoparticles by magnetron sputtering. The main advantage of this approach is independence of fabrication of primary nanoparticles and their subsequent modification. At first we optimized fabrication of nanoparticles by the gas aggregation source on behalf of the next modification. We also characterized conditions in the tubular sputtering system. We found process in the tubular system to be very complex and sensitive to the changes of the operational parameters. There is a strong interaction between flying nanoparticles and the discharge in the tubular system. Due to this interaction the nanoparticles are trapped in the plasma and the deposition rate is pulsing. The result of this work is modification of nickel and silver nanoparticles, preparation of heterogeneous nanoparticles Ni/Cu and Ag/Cu. These heterogeneous nanoparticles vary in composition, shape and size according to the conditions in the tubular system. We also successfully prepared Janus nanoparticles which are interesting for their...
|
3 |
Characterization of nanoparticle transport in flow through permeable mediaMetin, Cigdem 19 November 2013 (has links)
An aqueous nanoparticle dispersion is a complex fluid whose mobility in porous media is controlled by four key factors: the conditions necessary for the stability of nanoparticle dispersions, the kinetics of nanoparticle aggregation in an unstable suspension, the rheology of stable or unstable suspensions, and the interactions between the nanoparticles and oil/water interface and mineral surfaces. The challenges in controlling nanoparticle transport come from the variations of pH and ionic strength of brine, the presence of stationary and mobile phases (minerals, oil, water and gas), the geochemical complexity of reservoir rocks, and pore-network.
The overall objective of this work is to achieve a better understanding of nanoparticle transport in porous media based on a systematic experimental and theoretical study of above factors. For this purpose, the critical conditions for the aqueous stability of nanoparticles are identified and fit by a theoretical model, which describes the interaction energy between silica nanoparticles. Above critical conditions nanoparticle aggregation becomes significant. A model for the aggregation kinetics is developed and validated by experiments.
A mechanistic model for predicting the viscosity of stable and unstable silica nanoparticle dispersions over a wide range of solid volume fraction is developed. This model is based on the concept of effective maximum packing fraction.
Adsorption experiments with silica nanoparticles onto quartz, calcite and clay surfaces and interfacial tension measurements provide insightful information on the interaction of the nanoparticles with minerals and decane/water interface. The extent of nanoparticle adsorption on mineral/water and decane/water interfaces is evaluated based on DLVO theory and Gibbs’ equation. Visual observations and analytical methods are used to understand the interaction of nanoparticles with clay.
The characterization of nanoparticle behavior in bulk phases is built into an understanding of nanoparticle transport in porous media. In particular, the rheology of nanoparticle dispersions flowing through permeable media is compared with those determined using a rheometer. In the presence of residual oil, the retention of silica nanoparticles at water/oil interface during steady flow is investigated. The results from batch experiments of nanoparticle adsorption are used to explain the flow behavior of these nanoparticles in a glass bead pack at residual oil saturation. / text
|
Page generated in 0.1077 seconds