Spelling suggestions: "subject:"interfacial tension"" "subject:"lnterfacial tension""
1 |
Measurement of Surface Tensions in Aggregated Cells of the Embryonic ChickSweny, Jennifer 20 December 2007 (has links)
Cell surface properties are crucial to the mechanisms by which groups of cells organize themselves during embryogenesis, cancer metastases and tissue engineering. Measured surface tension values provide a quantitative basis for predicting a range of cell behaviors including sorting of embryonic cells, self-organization of pancreatic islet cells and invasive potential of tumor cells. Tissue surface tensions are a measurement of the tension that acts along the interface between a cell aggregate and its surrounding media and it is typically measured by compressing an aggregate of cells. In this study a novel apparatus is used to measure the surface tensions of aggregated embryonic chick cells from heart, liver, neural retina and mesencephalon tissues. These surface tension values are consistent with the known engulfment behavior of the cells involved and are in close agreement with measurements made previously by other means. It has been suggested that surface tensions and cell rearrangement patterns are a direct result of adhesion forces between cells arising from cadherins. However, cadherin binding alone is insufficient to account for observed engulfment phenomena and recent experimental evidence suggests that actin dynamics are involved. A cell surface property referred to as interfacial tension or cortical tension takes into account both adhesion forces and forces derived from actin microfilaments and could shed new light on the mechanisms involved in cell interactions. Computer simulations indicate that the interfacial tension between cells can be measured through a modified compression test experiment. In this cell aggregate compression study, cell shapes as well as the aggregate profile are measured in addition to the compression force in attempts to measure cell interfacial tensions.
|
2 |
Measurement of Surface Tensions in Aggregated Cells of the Embryonic ChickSweny, Jennifer 20 December 2007 (has links)
Cell surface properties are crucial to the mechanisms by which groups of cells organize themselves during embryogenesis, cancer metastases and tissue engineering. Measured surface tension values provide a quantitative basis for predicting a range of cell behaviors including sorting of embryonic cells, self-organization of pancreatic islet cells and invasive potential of tumor cells. Tissue surface tensions are a measurement of the tension that acts along the interface between a cell aggregate and its surrounding media and it is typically measured by compressing an aggregate of cells. In this study a novel apparatus is used to measure the surface tensions of aggregated embryonic chick cells from heart, liver, neural retina and mesencephalon tissues. These surface tension values are consistent with the known engulfment behavior of the cells involved and are in close agreement with measurements made previously by other means. It has been suggested that surface tensions and cell rearrangement patterns are a direct result of adhesion forces between cells arising from cadherins. However, cadherin binding alone is insufficient to account for observed engulfment phenomena and recent experimental evidence suggests that actin dynamics are involved. A cell surface property referred to as interfacial tension or cortical tension takes into account both adhesion forces and forces derived from actin microfilaments and could shed new light on the mechanisms involved in cell interactions. Computer simulations indicate that the interfacial tension between cells can be measured through a modified compression test experiment. In this cell aggregate compression study, cell shapes as well as the aggregate profile are measured in addition to the compression force in attempts to measure cell interfacial tensions.
|
3 |
Surfactant Screening to Alter the Wettability and Aid in Acidizing Carbonate FormationsYadhalli Shivaprasad, Arun Kumar 02 October 2013 (has links)
Surfactant flooding in carbonate matrix acidizing treatment has been widely used for changing the wettability of the rock and to achieve low IFT values. Optimizing the type of surfactant and concentration for the specific oil field is very important in order to avoid formation damage and to reduce the treatment cost.
We built an experimental procedure for screening the right surfactant to alter the wettability and aid in acidizing of Pekisko formation, Canada, which is strongly oil-wet and has high viscosity oil. Five surfactants were tested out of which three are cationic, one amphoteric and the other one was a fluoro-surfactant. Measurements were made of interfacial tension with different surfactant types/concentrations in brine with the oil and xylene, critical micelle concentration of each surfactant, solubility characteristics of the surfactants, compatibility of the chemical additives, wettability of the core after treating with surfactants, and core flooding in the laboratory to simulate matrix acidizing.
From the results obtained we noted that the fluoro-surfactant can cause formation damage due to precipitation in the brine. So the compatibility of every chemical additive should be tested first. The use of xylene as a pre-flush solution lowered the CMC and hence reduced the cost of the surfactant treatment. Aromox, an amine based surfactant was best suited for matrix acidizing treatment of the Pekisko formation.
|
4 |
Influence of emulsion stability on poly(HIPE) morphology and mechanical propertiesRohm, Kristen 01 February 2019 (has links)
No description available.
|
5 |
Interfacial Tension and Phase Behavior of Oil/Aqueous Systems with Applications to Enhanced Oil RecoveryJaeyub Chung (9511022) 16 December 2020 (has links)
Chemical enhanced oil recovery (cEOR) aims to increase the oil recovery of mature oil fields, using aqueous solutions of surfactants and polymers, to mobilize trapped oil and maintain production. The interfacial tensions (IFTs) between the injected aqueous solution, the oil droplets in reservoirs, and other possible phases formed (e.g., a “middle phase” microemulsion) are important for designing and assessing a chemical formulation. Ultralow IFTs, less than 10<sup>-2</sup> mN·m<sup>-1</sup>, are needed to increase the capillary number and help mobilize trapped oil droplets. Despite this fact, phase behavior tests have received more attention than IFTs for designing and evaluating surfactant formulations that result in high oil recovery efficiencies, because incorporating reliable IFTs into such evaluation process is avoided due to difficulties in obtaining reliable values. Hence, the main thrusts of this dissertation are to: (a) develop robust IFT measurement protocols for obtaining reliable IFTs regardless of the complexity of water and oil phase constituents and (b) improve the existing surfactant polymer formulation evaluation and screening processes by successfully incorporating the IFT as one of the critical parameters.<br>First, two robust tensiometry protocols using the known emerging bubble method (EBM) and the spinning bubble method (SBM) were demonstrated, for determining accurately equilibrium surface tensions (ESTs) and equilibrium IFTs (EIFTs). The protocols are used for measuring the dynamic surface tensions (DSTs), determining the steady state values, and establishing the stability of the steady state values by applying small surface area perturbations by monitoring the ST or IFT relaxation behavior. The perturbations were applied by abruptly expanding or compressing surface areas by changing the bubble sizes with an automated dispenser for the EBM, and by altering the rotation frequency of the spinning tube for the SBM. Such robust tension measurement protocols were applied for Triton X-100 aqueous solutions at a fixed concentration above its critical micelle concentration (CMC). The EST value of the model solution was 31.5 ± 0.1 mN·m<sup>-1</sup> with the EBM and 30.8 ± 0.2 mN·m<sup>-1</sup> with the SBM. These protocols provide robust criteria for establishing the EST values.<br>Second, the EIFTs of a commercial single chain anionic surfactant solution in a synthetic brine against a crude oil from an active reservoir were determined with the new protocol described earlier. The commercial surfactant used here has an oligopropoxy group between a hydrophobic chain and a sulfate head group. The synthetic brine has 9,700 ppm of total dissolved salts, which are a mixture of sodium chloride (NaCl), potassium chloride (KCl), manganese (II) chloride tetrahydrate (MnCl<sub>2</sub>·4H<sub>2</sub>O), magnesium (II) chloride hexahydrate (MgCl<sub>2</sub>·6H<sub>2</sub>O), barium chloride dihydrate (BaCl<sub>2</sub>·2H<sub>2</sub>O), sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O), sodium bicarbonate (NaHCO<sub>3</sub>), and calcium chloride dihydrate (CaCl<sub>2</sub>·2H<sub>2</sub>O). The DSTs curves of the surfactant concentrations from 0.1 ppm to 10,000 ppm by weight had a simple adsorption/desorption equilibrium at air/water surface with surfactant diffusion from bulk aqueous phase. Such a mechanism was also observed from the tension relaxation behavior after area perturbations for the oil/water interfaces while DIFT measurements. The CMC of the commercial surfactant was determined to be 12 ppm in water and 1 ppm in the synthetic brine used. From the initial tension reduction curves from DST and DIFT measurements, the equilibrium timescales were shorter with brine than with water, because the adsorbed surfactant on the oil/water interfaces were partitioned into oil phases. For both DST and DIFT results suggest that the adsorbed surfactant layer at interfaces were typical adsorbed soluble monolayers.<br>Third, the phase and rheological behavior of a commercial anionic surfactant in water and in brine are important for large scale applications. A phase map of the surfactant at 25 °C at full range of surfactant concentration was obtained. The supramolecular structures of the various phases were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), conductimetry, densitometry, and x-ray scattering. The identified phases evolved as the surfactant concentration was increased; they were a micellar solution phase, a hexagonal liquid crystalline phase, and a lamellar liquid crystalline phase. In addition, the characterization results provided detailed information about supramolecular structure parameters such as micellar sizes and their aggregation numbers, and liquid crystal spacings. The phase and rheological behavior trends identified here were of great importance because the trend was similar to that of single chain monoisomeric surfactant. Thus, this study provides a potential universality of phase behavior trends of surfactant-water systems despite of the multicomponent nature of surfactants.<br>Fourth, the EIFTs of the pre-equilibrated mixtures of surfactant, brine, and oil were determined and compared to the EIFTs prior to pre-equilibration, in order to systematically identify the most relevant IFT for oil recovery. The EIFT between surfactant solutions and oil without any pre-equilibration prior to tension measurements is defined as the un-pre-equilibrated EIFT (EIFT<sub>up</sub>). The EIFT between oil and water phases after the pre-equilibration of surfactant, brine, and oil is defined as pre-equilibrated EIFT (EIFT<sub>p</sub>). The EIFT<sub>p</sub>’s were generally higher than EIFT<sub>up</sub>’s. In addition, the effects of three mixing methods and the water-to-oil volume ratio (WOR) on the EIFT<sub>p</sub> were evaluated. Out of three mixing methods, (A) mild mixing, (B) magnetic stirring, and (C) shaking vigorously by hand, method C produced mixtures which are the closest to the equilibrium state. The mixtures produced by method C had the largest decrease of the surfactant concentration during pre-equilibration due to the surfactant partitioning into oil phases. Moreover, the WOR affects the EIFT<sub>p</sub> significantly due to the preferential partitioning of surfactant components into oil phases. More specifically, the WOR and the EIFT<sub>p</sub> were found to be inversely correlated, because the amount of partitioned surfactant increased as the oil volume fraction increased. The EIFT<sub>p</sub>’s were different from the EIFT<sub>up</sub>’s at the same total surfactant concentrations in the aqueous layer evidently because of preferential partitioning of the various surfactant components.<br>Finally, the effect of surfactant losses due to adsorption into the rock surface on the pre-equilibrated EIFT (EIFT<sub>p</sub>) were evaluated to improve surfactant formulation protocols. Here, five types of EIFTs were identified, along with robust protocols for determining them. These are: (I) the un-pre-equilibrated equilibrium IFT (EIFT<sub>up</sub>); (II) the un-pre-equilibrated EIFTs in the presence of rock (EIFT<sub>up,rock</sub>); (III) the pre-equilibrated EIFTs (EIFT<sub>p</sub>) in the presence of oil; (IV) the pre-equilibrated EIFT in the presence of rock and oil (EIFT<sub>p,rock</sub>); and (V) the effluent EIFT (EIFT<sub>eff</sub>). The EIFT<sub>up</sub> is the EIFT of the aqueous surfactant/brine solution against an oil drop without any pre-equilibration. The EIFT<sub>up,rock</sub> is the EIFT between an oil drop and the surfactant solution after pre-equilibration with a rock sample to account for adsorption losses. The EIFT<sub>p</sub> is the EIFT between the pre-equilibrated water and the oil phases from surfactant/brine/oil mixtures. The EIFT<sub>p,rock</sub> is the EIFT between the pre-equilibrated water and the oil phases from surfactant/brine/oil/rock mixtures. The EIFT<sub>eff</sub> is the EIFT from an effluent sample mixture of a laboratory-scale core flood test. Among the five types of EIFTs, the EIFT<sub>p,rock</sub> was found to be the most important for the highest oil recovery performance in core flood tests, because it captures the most important surfactant partition processes, the partitioning to the oil phase and the partitioning by adsorption on the rock surface. Among three surfactant formulations tested with core flood experiments, the one with the lowest EIFT<sub>p,rock</sub> (~0.01 mN·m<sup>-1</sup>) had the highest oil recovery ratio (78%), and the one with the highest EIFT<sub>p,rock</sub> (~0.2 mN·m<sup>-1</sup>) had the lowest oil recovery ratio (55%). The other EIFTs correlated less with the oil recovery performance. Identifying surfactant formulations that have low or ultralow EIFTs, especially ultralow EIFT<sub>p,rock</sub>’s, are critical for screening formulations appropriate for core flood tests and target field applications, and for predicting oil recovery performance. These works are a significant contribution for improving (a) the surfactant formulation evaluation protocols, and (b) the utilization of reliable IFTs and phase behavior test protocols for oil recovery and many other surfactant and colloid sciences applications.<br>
|
6 |
Estudo do comportamento reológico da mistura polimérica PMMA/PS compatibilizada ou não. / Rheological behavior of PMMA/PS polymer blends compatibilized or not.Yee, Márcio 23 October 2008 (has links)
Neste trabalho, foi estudado o comportamento reológico nos regimes de viscoelasticidade linear (VEL) e não linear (VENL) da mistura polimérica de polimetacrilato de metila/poliestireno (PMMA/PS), compatibilizada ou não com os copolímeros: estatístico P(S-co-MMA) (VEL e VENL) e bloco P(S-b-MMA) (VEL). No estudo do comportamento de VEL, ensaios de cisalhamento oscilatório de pequenas amplitudes (COPA) foram realizados utilizando-se um reômetro de tensão controlada. O comportamento de VEL das misturas poliméricas foi comparado com os modelos teóricos de Bousmina[1] e generalizado de Palierne[2]. Os tempos de relaxação das misturas poliméricas foram obtidos analisando o comportamento reológico no regime de VEL utilizando o software desenvolvido por Honerkamp e Weese[3]. Os tempos obtidos foram comparados com o modelo de Jacobs et al.[4]. O estudo do comportamento de VENL foi conduzido através de ensaios de relaxação de tensão utilizando-se um reômetro de deformação controlada. Os resultados do comportamento reológico no regime de VEL indicaram a presença de quatro tempos de relaxação, para as blendas compatibilizadas com P(S-co- MMA) (composições menores de 10% de fase dispersa e concentrações maiores de 4% de copolímero): dois picos relacionados às fases puras; F, relacionado com a relaxação das gotas da fase dispersa e o relacionado com a relaxação do compatibilizante na interface entre as fases matriz e dispersa. Os valores experimentais de F e foram utilizados para os cálculos de tensão interfacial () e do módulo complexo de interface () das blendas poliméricas compatibilizadas. Os resultados indicaram uma diminuição de com o aumento da concentração de copolímero. Os resultados do comportamento reológico no regime de VEL, para as blendas compatibilizadas com P(S-b-MMA), também apresentaram a presença de quatro tempos de relaxação. Observou-se que o aumento da adição de P(S-b-MMA) proporcionou uma redução no .. Os resultados de VENL de relaxação de tensão mostraram a presença de três fenômenos de relaxação, relacionados com: 1) as fases puras, 2) a relaxação das gotas da fase dispersa e um terceiro mais rápido. A adição de P(S-co-MMA) resultou numa diminuição do processo de relaxação das gotas da fase dispersa. / In this work, the dynamic behavior of polymethylmetacrylate/polystyrene (PMMA/PS) blends to which P(S-co-MMA) was added was studied. Several blend composition and copolymer concentrations were studied. The rheological behavior of blends was compared to Bousminas[1] and Paliernes generalized[2] models. The relaxation spectra of the blends were also inferred, and the results were analyzed in light of the analysis of Jacobs et al.[4]. The relaxation spectra of the blends with smaller dispersed phase (below 10 wt%) and larger copolymer concentrations (above 0.4 wt%) showed the presence of four relaxation times, two corresponding to the blend phases, F, corresponding to the relaxation of the shape of the dispersed phase of the blend, and , that can be attributed to the relaxation of Marangoni stresses tangential to the interface between the dispersed phase and matrix. The experimental values of F and were used to infer the interfacial tension () and the interfacial complex shear modulus () for the different blends, decreased with increasing copolymer concentration. decreased with increasing blend dispersed phase concentration and decreasing copolymer concentration. The predictions of Paliernes generalized model were found to corroborate the experimental data once the values of and found analyzing the relaxation spectra were used in the calculations. Bousminas model was found to corroborate the data only for larger dispersed phase concentration. The stress relaxation behavior of PMMA/PS blends with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition, viscosity ratio and random copolymer was evaluated. All blends presented three relaxation stages, a first relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of plateau and a third fast one.
|
7 |
Estudo do comportamento reológico da mistura polimérica PMMA/PS compatibilizada ou não. / Rheological behavior of PMMA/PS polymer blends compatibilized or not.Márcio Yee 23 October 2008 (has links)
Neste trabalho, foi estudado o comportamento reológico nos regimes de viscoelasticidade linear (VEL) e não linear (VENL) da mistura polimérica de polimetacrilato de metila/poliestireno (PMMA/PS), compatibilizada ou não com os copolímeros: estatístico P(S-co-MMA) (VEL e VENL) e bloco P(S-b-MMA) (VEL). No estudo do comportamento de VEL, ensaios de cisalhamento oscilatório de pequenas amplitudes (COPA) foram realizados utilizando-se um reômetro de tensão controlada. O comportamento de VEL das misturas poliméricas foi comparado com os modelos teóricos de Bousmina[1] e generalizado de Palierne[2]. Os tempos de relaxação das misturas poliméricas foram obtidos analisando o comportamento reológico no regime de VEL utilizando o software desenvolvido por Honerkamp e Weese[3]. Os tempos obtidos foram comparados com o modelo de Jacobs et al.[4]. O estudo do comportamento de VENL foi conduzido através de ensaios de relaxação de tensão utilizando-se um reômetro de deformação controlada. Os resultados do comportamento reológico no regime de VEL indicaram a presença de quatro tempos de relaxação, para as blendas compatibilizadas com P(S-co- MMA) (composições menores de 10% de fase dispersa e concentrações maiores de 4% de copolímero): dois picos relacionados às fases puras; F, relacionado com a relaxação das gotas da fase dispersa e o relacionado com a relaxação do compatibilizante na interface entre as fases matriz e dispersa. Os valores experimentais de F e foram utilizados para os cálculos de tensão interfacial () e do módulo complexo de interface () das blendas poliméricas compatibilizadas. Os resultados indicaram uma diminuição de com o aumento da concentração de copolímero. Os resultados do comportamento reológico no regime de VEL, para as blendas compatibilizadas com P(S-b-MMA), também apresentaram a presença de quatro tempos de relaxação. Observou-se que o aumento da adição de P(S-b-MMA) proporcionou uma redução no .. Os resultados de VENL de relaxação de tensão mostraram a presença de três fenômenos de relaxação, relacionados com: 1) as fases puras, 2) a relaxação das gotas da fase dispersa e um terceiro mais rápido. A adição de P(S-co-MMA) resultou numa diminuição do processo de relaxação das gotas da fase dispersa. / In this work, the dynamic behavior of polymethylmetacrylate/polystyrene (PMMA/PS) blends to which P(S-co-MMA) was added was studied. Several blend composition and copolymer concentrations were studied. The rheological behavior of blends was compared to Bousminas[1] and Paliernes generalized[2] models. The relaxation spectra of the blends were also inferred, and the results were analyzed in light of the analysis of Jacobs et al.[4]. The relaxation spectra of the blends with smaller dispersed phase (below 10 wt%) and larger copolymer concentrations (above 0.4 wt%) showed the presence of four relaxation times, two corresponding to the blend phases, F, corresponding to the relaxation of the shape of the dispersed phase of the blend, and , that can be attributed to the relaxation of Marangoni stresses tangential to the interface between the dispersed phase and matrix. The experimental values of F and were used to infer the interfacial tension () and the interfacial complex shear modulus () for the different blends, decreased with increasing copolymer concentration. decreased with increasing blend dispersed phase concentration and decreasing copolymer concentration. The predictions of Paliernes generalized model were found to corroborate the experimental data once the values of and found analyzing the relaxation spectra were used in the calculations. Bousminas model was found to corroborate the data only for larger dispersed phase concentration. The stress relaxation behavior of PMMA/PS blends with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition, viscosity ratio and random copolymer was evaluated. All blends presented three relaxation stages, a first relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of plateau and a third fast one.
|
8 |
Functional Properties of Protein and Chitin from Commercial Cricket FlourAndrew J. Hirsch (5930660) 03 January 2019 (has links)
<div>The House Cricket (Acheta domesticus) is a promising alternative to traditional protein sources, as these insects produce over 12 times the mass of protein for a given mass of food/water when compared to cattle, while also producing lower amounts of greenhouse gases and NH3 emissions (Kim et al. 2017, Hanboonsong, Jamjanya and Durst 2013, Van Huis 2013). Additionally, previous studies have demonstrated significant emulsification and gelling properties of insect flours, such as from cricket, which has been attributed to the functional properties of the protein (Kim et al. 2017). Ground cricket flours contain significant quantities of both protein and fibrous polysaccharides, particularly chitin. Since chitin particles are also capable of preparing emulsions as a Pickering stabilizer, there remains a question on the relative role of the protein and chitin components in crickets for stabilizing emulsion products. Relative contributions of each component was identified by first isolating the water-soluble protein and water-insoluble chitin fractions from ground cricket flour and then determining their interfacial properties and stability of prepared oil-in-water emulsions. Dynamic interfacial tension measurements indicated significant surface activity of the protein fraction, while there was minimal evidence of significant surface pressure development in the presence of 5-10 μm chitin particles. 10 % (w/w) canola oil-in-water emulsions were prepared with 0.5-2% (w/w) of the water-soluble protein fraction and 5.29% (w/w) canola oil-in-water emulsions were prepared with 0.688% of the chitin fraction. Stability of the emulsions against creaming was between 75% and 90% for emulsions stabilized by the protein fraction over three weeks of storage and between 93% and 96% for emulsions stabilized by chitin over 24 hours of storage. Significant fractions of precipitate- and oil-layers found in chitin-stabilized dispersions was attributed to the presence of large chitin particles (79 μm volume weighted mean diameter) and inefficient adsorption to droplet interfaces during homogenization, respectively. Volume-weighted mean diameter of emulsified oil droplets remained at 17-24 μm among protein-stabilized (>1.5 wt%) emulsions over three weeks of storage but only 60 μm over 24 hours among chitin-stabilized emulsions. Light micrographs of emulsion droplets showed successful adsorption of chitin fractions to oil droplets in the emulsion layer, verifying their potential as Pickering stabilizers. These findings demonstrated that both water-soluble protein and chitin particles obtained from ground cricket flours are legitimate emulsion stabilizers, yet the chitin fraction is much less effective without a more intensive approach to reduce their particle size.</div>
|
9 |
Modelling physical mechanisms driving tissue self-organisation in the early mammalian embryoRevell, Christopher January 2018 (has links)
In the mammalian embryo, between 3.5 and 4.5 days after fertilisation, the cells of the inner cell mass evolve from a uniform aggregate to an ordered structure with two distinct tissue layers - the primitive endoderm and epiblast. It was originally assumed that cells differentiated to form these layers in situ, but more recent evidence suggests that both cell types arise scattered throughout the inner cell mass, and it is thus proposed that the tissue layers self-organise by physical mechanisms after the specification of the two cell types. We have developed a computational model based on the subcellular element method to combine theoretical and experimental work and elucidate the mechanisms that drive this self-organisation. The subcellular element method models each cell as a cloud of infinitesimal points that interact with their nearest neighbours by local forces. Our method is built around the introduction of a tensile cortex in each cell by identifying boundary elements and using a Delaunay triangulation to define a network of forces that act within this boundary layer. Once the cortex has been established, we allow the tension in the network to vary locally at interfaces, modelling the exclusion of myosin at cell-cell interfaces and consequent reduction in tension. The model is validated by testing the simulated interfaces in cell doublets and comparing to experimental data and previous theoretical work. Furthermore, we introduce dynamic tension to model blebbing in primitive endoderm cells. We investigate the effects of cortical tension, differential interfacial tension, and blebbing on interfaces, rearrangement, and sorting. By establishing quantitative measurements of sorting we produce phase diagrams of sorting magnitude given system parameters and find that robust sorting in a 30 cell aggregate is best achieved by a combination of differential interfacial tension and blebbing.
|
10 |
Élaboration et caractérisation de nanocomposites à base de mélanges polystyrène/polyamide 6 et d'argile montmorillonite / Preparation and characterization of polystyrene / polyamide6 / montmorillonite nanocomposites compatibiliezd with graft copolymersMagaton, Marina 15 November 2010 (has links)
Ce travail concerne l’élaboration de nanocomposites à base de polystyrène/polyamide 6/argile montmorillonite (PS/PA6/MMT). Son but premier a été d’évaluer l’influence d’un copolymère polystyrène greffé polyamide 6 (PS-g-PA6), en tant qu’agent compatibilisant pour promouvoir une meilleure interaction PS-PA6, et son influence dans l’intercalation/exfoliation des argiles, d’une part ; évaluer les structures et les propriétés des nanocomposites obtenus. Deux sortes d’argile montmorillonite ayant différents modificateurs organiques, bien que cinq sortes de PS-g-PA6 contenant différentes quantités de PA6 et différentes masses molaires de greffés ont étés utilisés. Deux compositions de mélange PS/PA6 ont été préparées, 50/50 et 80/20 % en poids. Les quantités d’argile et de PS-g-PA6 utilisées dans les mélanges ont étés 5 et 3% en poids, respectivement. Les images obtenues par microscopie électronique à balayage (MEV) ont montré qu’une inversion de phase a lieu entre les deux compositions, sus les conditions de procédé utilisées, le PS étant la phase mineure à 50/50 %. Les images de MEV ont également révélé que les copolymères et l’argile ont un effet synergique dans la compatibilization des mélanges PS/PA6, dans les deux compositions. La capacité de compatibilization des copolymères est fortement affectée par ses masses molaires et ses quantités de PA6, que promeuvent différents degrés de nouvellement des chaines dans l’interface PS/PA6. De manière générale, les copolymères contenant une plus grande quantité de PA6, associés à l’argile qui meilleure itérât avec la PA6 présentaient des meilleures propriétés / This work aimed the preparation and characterization on polystyrene / polyamide 6 / montmorillonite clay (PS/PA6/MMT) nanocomposites. The goal was to evaluate the influence of the addition of polystyrene graft copolymer with polyamide 6 (PA6-g-PS) with potential to act as a coupling agent, promoting better interaction between PS and PA6, and to study the structures and properties of obtained nanocomposites. Two types of montmorillonite clay, organically modified with different modifiers, as well as five types of PS-g-PA6 copolymer, possessing different amounts of PA6 and grafts with different molecular weights, were employed. Two PS/PA6 blends compositions were prepared, 50/50 and 80/20 wt%. The chosen amount of clay and PS-g-PA6 were 5 and 3% by weight, respectively. Images obtained via scanning electron microscopy (SEM) showed a phase inversion occurring between the two compositions, being PS the dispersed phase in 50/50% composition. SEM images also showed that the addition of copolymers and clay have a synergistic effect on the compatibilization of the blends PS/PA6 in both compositions. The copolymers coalescence ability is strongly affected by their molecular weight and their amount of PA6, which provides different levels of folding of the chains at the interface PS-PA6.The best results were obtained in systems where it was added concomitantly clay and copolymer. Rheology and TEM results showed that the molecular weight of copolymers influence the interfacial tension in mixtures. In general, copolymers containing larger amounts of PA6, associated with clay that best interacts with PA6, showed the best results
|
Page generated in 0.1049 seconds