Spelling suggestions: "subject:"agrégat polycrystalline"" "subject:"aggrégat polycrystalline""
1 |
Modélisation du comportement en plasticité et à rupture des aciers bainitiques irradiésNguyen, Can Ngon 04 February 2010 (has links) (PDF)
Les aciers faiblement alliés sont utilisés dans les réacteurs nucléaires pour la réalisation de différents équipements. Soumis à une irradiation neutronique induite par le fonctionnement du réacteur, ces matériaux présentent des évolutions notables de leur microstructure, avec en particulier l'apparition de défauts d'irradiation comme des boucles interstitielles, des amas lacunaires et des précipités, qui conduisent à un durcissement et une fragilisation en relation directe avec la dose reçue et le flux neutronique. Le comportement en plasticité hors irradiation des aciers bainitiques faiblement alliés a fait l'objet de plusieurs modélisations élaborées à partir d'observations expérimentales et de modélisations à l'échelle atomique. Plusieurs thèses ont été supportées par EDF et le CEA dans le passé. Ce travail se place dans leur prolongement, et adopte une démarche classique, en utilisant des éléments expérimentaux connus, mais il se place de façon déterminée à l'échelle de la microstructure, et cherche à intégrer un maximum d'informations de métallurgie physique. C'est dans cet esprit que sont introduites des microstructures réalistes en termes de morphologie et d'orientation cristalline, et qu'on adopte un modèle de plasticité cristalline en grandes déformations basé sur les densités de dislocations. Ce choix permet de prendre en compte dans les lois de plasticité les interactions entre dislocations et défauts d'irradiations pour des conditions de chargements sévères. Ces lois sont introduites dans le code de calcul par éléments finis ZéBuLoN afin de réaliser des calculs d'agrégats polycristallins aux propriétés représentatives d'un élément de volume macroscopique. Les résultats obtenus sur un tel agrégat sont donc considérés comme une donnée élémentaire dans la manipulation des modèles de rupture fragile sur des structures. La nouvelle approche développée a un statut d'approche locale micromécanique".
|
2 |
Etude numérique de la plasticité d'agrégats polycristallinsBarbe, Fabrice 22 December 2000 (has links) (PDF)
Cette étude a été effectuée à la suite du développement de lois et d'outils applicables à la modélisation numérique du comportement élastoviscoplastique de matériaux cristallins : des lois de comportement de monocristaux, des lois de transition d'échelle pour les modèles d'homogénéisation, un code de calcul Eléments Finis adapté au calcul parallèle et un programme de génération de microstructures polycristallines 3D. Disposant de ces éléments, nous avons étudié le comportement de polycristaux 3D en petites déformations, aux échelles macroscopique, intergranulaire et intragranulaire.<br />Le milieu polycristallin est décrit par des polyèdres de Voronoï, donnés sous la forme d'un fichier de voxels (L. Decker, D. Jeulin, ENSMP). L'implémentation de la méthode FETI dans le code EF ZéBuLoN (F. Feyel, S. Quilici, ENSMP-ONERA) permet la résolution en parallèle de problèmes à très grand nombre de degrés de liberté. Ainsi nous avons accès à un nombre illimité de réalisations de microstructures et nous pouvons faire figurer suffisamment d'éléments dans un maillage pour que soit possible la description des champs intragranulaires dans un polycristal 3D.<br />Pour commencer nous montrons les spécificités de notre approche par rapport aux travaux de modélisation de la plasticité cristalline. La première partie de l'exploitation des outils a consisté à analyser la sensibilité des résultats aux données de la modélisation (nombre d'éléments, nombre de grains, réalisation de microstructure . . . ) afin d'établir une configuration de calcul valable pour des simulations sur un Volume Elémentaire Représentatif de polycristal isotrope. En seconde partie nous mettons en évidence l'hétérogénéité de comportement inter- et intragranulaire et l'apport de la méthode par rapport à une démarche autocohérente. Ceci est complété par une analyse de l'influence des joints de grain et des conditions aux limites sur la réponse d'un essai en traction simple, aux différentes échelles de la modélisation. Nous caractérisons ainsi un effet local et un effet moyen pour tous les grains, en fonction de la distance à un joint ou à un bord. En annexe sont donnés les résultats de simulations obtenus avec un modèle non-local des milieux de Cosserat (S. Forest, ENSMP) qui ont permis de quantifier un effet de taille de grain sur le comportement effectif de polycristaux.
|
3 |
Approches expérimentales et multi-échelles des processus d'amorçage de fissures en fatigue sous chargements complexesAgbessi, Komlan 21 March 2013 (has links) (PDF)
Les méthodes de calcul en fatigue à grande durée de vie sont en cours de développement depuis des décennies et sont utilisées par les ingénieurs pour dimensionner les structures. Généralement, ces méthodes se basent sur la mise en équations de quantités mécaniques calculées à l'échelle macroscopique ou mésoscopique. Les critères de fatigue multiaxiale reposent généralement sur des hypothèses de changement d'échelle dont l'objectif est d'accéder à l'état de contraintes ou de déformations à l'échelle du grain. Dans les approches de type plan critique (Dang Van, Papadopoulos, Morel), l'amorçage d'une fissure de fatigue est considéré comme piloté par une quantité mécanique liée à une orientation matérielle particulière (plan critique). Si ces phénomènes sont bien établis dans le cas des chargements uniaxiaux, la nature des mécanismes liés à l'activation des systèmes de glissement, à la multiplicité du glissement et aux différents sites préférentiels d'amorçage de fissures sous chargements complexes reste peu connue.Afin de mieux comprendre les mécanismes d'endommagement en fatigue multiaxiale, les techniques d'analyse et de caractérisation de l'activité plastique (activation des systèmes de glissements, bandes de glissement persistantes) et d'observation de l'endommagement par fatigue ont été mises en place en se basant principalement sur des observations MEB et analyses EBSD. Ces investigations ont permis de mettre en lumière les effets des chargements non proportionnels sur la multiplicité du glissement sur du cuivre pur OFHC. L'étude statistique des sites préférentiels d'amorçage de fissures montre que les grains à glissement multiple présentent une forte probabilité d'amorçage de fissures, surtout sous les chargements non proportionnels. Nous avons également mis en évidence le rôle des joints de grains et des joints de macle sur le développement de la plasticité à l'échelle de la microstructure. Les résultats expérimentaux sont confrontés à ceux du calcul éléments finis (EF) en plasticité polycristalline sur des microstructures synthétiques 3D semi-périodiques. L'application du critère de Dang Van à l'échelle mésoscopique (le grain) montre une forte variabilité de la contrainte hydrostatique et du cisaillement. Cette variabilité est plus importante pour un modèle de comportement cristallin élastique anisotrope. Le rôle de la plasticité cristalline se révèle secondaire. Ces analyses permettent de remettre en perspective les hypothèses usuelles de changement d'échelle utilisées en fatigue multiaxiale. Enfin, une méthode basée sur la statistique des valeurs extrêmes est proposée pour le dépouillement des calculs EF sur agrégats. Cette analyse a été appliquée sur la contrainte équivalente associée au critère de fatigue de Dang Van pour les calculs d'agrégats polycristallins avec différentes morphologies et orientations des grains. Les effets de la surface libre, du type de chargement et du modèle de comportement mécanique des grains ont été analysés. Les résultats offrent des perspectives intéressantes sur la modélisation de l'amorçage des fissures en fatigue multiaxiale des matériaux et des structures avec une prise en compte de la microstructure.
|
4 |
Approches expérimentales et multi-échelles des processus d'amorçage de fissures en fatigue sous chargements complexes / Experimental and multi-scale approaches of fatigue crack initiation process under complex loading conditionsAgbessi, Komlan 21 March 2013 (has links)
Les méthodes de calcul en fatigue à grande durée de vie sont en cours de développement depuis des décennies et sont utilisées par les ingénieurs pour dimensionner les structures. Généralement, ces méthodes se basent sur la mise en équations de quantités mécaniques calculées à l'échelle macroscopique ou mésoscopique. Les critères de fatigue multiaxiale reposent généralement sur des hypothèses de changement d'échelle dont l'objectif est d'accéder à l'état de contraintes ou de déformations à l'échelle du grain. Dans les approches de type plan critique (Dang Van, Papadopoulos, Morel), l'amorçage d'une fissure de fatigue est considéré comme piloté par une quantité mécanique liée à une orientation matérielle particulière (plan critique). Si ces phénomènes sont bien établis dans le cas des chargements uniaxiaux, la nature des mécanismes liés à l'activation des systèmes de glissement, à la multiplicité du glissement et aux différents sites préférentiels d'amorçage de fissures sous chargements complexes reste peu connue.Afin de mieux comprendre les mécanismes d'endommagement en fatigue multiaxiale, les techniques d'analyse et de caractérisation de l'activité plastique (activation des systèmes de glissements, bandes de glissement persistantes) et d'observation de l'endommagement par fatigue ont été mises en place en se basant principalement sur des observations MEB et analyses EBSD. Ces investigations ont permis de mettre en lumière les effets des chargements non proportionnels sur la multiplicité du glissement sur du cuivre pur OFHC. L'étude statistique des sites préférentiels d'amorçage de fissures montre que les grains à glissement multiple présentent une forte probabilité d'amorçage de fissures, surtout sous les chargements non proportionnels. Nous avons également mis en évidence le rôle des joints de grains et des joints de macle sur le développement de la plasticité à l'échelle de la microstructure. Les résultats expérimentaux sont confrontés à ceux du calcul éléments finis (EF) en plasticité polycristalline sur des microstructures synthétiques 3D semi-périodiques. L'application du critère de Dang Van à l'échelle mésoscopique (le grain) montre une forte variabilité de la contrainte hydrostatique et du cisaillement. Cette variabilité est plus importante pour un modèle de comportement cristallin élastique anisotrope. Le rôle de la plasticité cristalline se révèle secondaire. Ces analyses permettent de remettre en perspective les hypothèses usuelles de changement d'échelle utilisées en fatigue multiaxiale. Enfin, une méthode basée sur la statistique des valeurs extrêmes est proposée pour le dépouillement des calculs EF sur agrégats. Cette analyse a été appliquée sur la contrainte équivalente associée au critère de fatigue de Dang Van pour les calculs d'agrégats polycristallins avec différentes morphologies et orientations des grains. Les effets de la surface libre, du type de chargement et du modèle de comportement mécanique des grains ont été analysés. Les résultats offrent des perspectives intéressantes sur la modélisation de l'amorçage des fissures en fatigue multiaxiale des matériaux et des structures avec une prise en compte de la microstructure. / The development of high cycle fatigue (HCF) strength assessment methods has now been running for more than a century, leading to relatively efficient methods for engineers. Generally, these methods are based on mechanical quantities calculated at macroscopic or mesoscopic scales and validated by the model's ability to accurately reproduce experimental results. Multiaxial fatigue strength criteria are usually based on scaling transition assumptions aiming at capturing the stress or strain state in the grain. In the case of critical plane based criteria (Dang Van, Papadopoulos, Morel), fatigue crack initiation is supposed to be controlled by a mechanical quantity linked to a particular orientation (critical plane). If fatigue crack initiation phenomena are well established in the case of uniaxial loadings, the nature of the mechanisms involved in the activation of slip systems, multiple slip and preferential sites of rack initiation under complex loadings remains little known.To better understand the mechanisms of multiaxial fatigue crack initiation, analysis and characterization of the plastic activity (e.g. activation of slip systems, persistent slip bands) and observations of fatigue damage have been carried out on pure OFHC copper, using SEM and EBSD analyses. These investigations enabled to highlight the effects of non-proportional multiaxial loadings through the induced multiplicity of slip. The statistical study of preferential crack initiation sites shows that grains with multiple slip have a high probability of crack initiation, especially under non-proportional loading. We also highlighted the role of grain boundaries and twin boundaries on the development of plasticity across the microstructure. The experimental results were compared with those of finite element crystal plasticity computations on synthetic 3D semi-periodic microstructures. The application of the Dang Van criterion at the mesoscopic (grain) scale showed a strong variability of the hydrostatic stress and the shear stress. This variability was greater for anisotropic elastic behavior, while the role of crystal plasticity seemed to be secondary. These analyses allowed putting into perspective the usual assumptions of scaling transition rules used in multiaxial fatigue. Finally, a method based on the extreme values statistics was proposed and applied to the equivalent stress associated to the Dang Van fatigue criterion for polycrystalline aggregate computations with different morphologies and grains orientations. The effects of the microstructure, free surface, loading types and mechanical behavior were analyzed. The results offered interesting insights into the multiaxial fatigue modeling of metals and structures taking into account the microstructure.
|
5 |
Influence d'accidents géométriques et du mode de chargement sur le comportement en fatigue à grand nombre de cycles d'un acier inoxydable austénitique 316L / Influence of defects and loading paths on the high cycle fatigue behavior of an austenitic stainless steel 316LGuerchais, Raphaël 18 July 2014 (has links)
L'objectif de ces travaux de thèse est d'étudier l'influence de la microstructure et de défauts géométriques sur le comportement en fatigue à grand nombre de cycles (FGNC) d'un acier inoxydable austénitique 316L. La méthodologie proposée s'appuie sur des simulations par éléments finis (EF) d'agrégats polycristallins qui permettent de décrire les champs mécaniques à l'échelle des mécanismes impliqués dans les processus d'amorçage de fissures de fatigue.Une étude numérique préliminaire, s'appuyant sur des données expérimentales issues de la littérature, est conduite sur un cuivre électrolytique à l'aide de simulations numériques d'agrégats polycristallins en 2D. L'effet du trajet de chargement et de défauts artificiels de taille proche ou légèrement supérieure à celle de la microstructure sur les réponses mécaniques mésoscopiques sont analysés. Les capacités de prédiction de quelques critères de fatigue, s'appuyant sur des quantités mécaniques mésoscopiques, sont évaluées. Il est mis en évidence que les limites de fatigue macroscopiques prédites par un critère de fatigue probabiliste sont en accord avec les tendances expérimentales observées en fatigue multiaxiale et en présence de défauts.Une campagne expérimentale a été menée sur un acier austénitique 316L. Des essais de fatigue oligocyclique sont conduits afin de caractériser le comportement élasto-plastique du matériau. Des essais de FGNC, utilisant des éprouvettes avec et sans défaut de surface (défaut artificiel hémisphérique) ont été effectués pour estimer les limites de fatigue dans différentes conditions de sollicitation (traction, torsion, traction et torsion combinée, traction biaxiale) et pour plusieurs rayons de défaut. Dans le but de compléter la caractérisation du matériau, la microstructure est étudiée à l'aide d'analyses EBSD et la texture cristallographique est mesurée par diffraction des rayons X. Ces résultats expérimentaux sont utilisés pour reproduire, avec des simulations EF, les essais de FGNC sur des microstructures 2D et 3D représentatives de l'acier austénitique. L'hétérogénéité de quantités mécaniques mésoscopiques pertinentes en fatigue est discutée avec une attention particulière sur l'effet des défauts. L'approche probabiliste est appliquée aux résultats des modèles EF pour quantifier l'effet de la taille du défaut, pour différents trajets de chargement. La pertinence, vis-à-vis des observations expérimentales, des distributions de la limite de fatigue prédites est évaluée. / The aim of this study is to analyze the influence of both the microstructure and defects on the high cycle fatigue (HCF) behaviour of a 316L austenitic stainless steel thanks to finite element (FE) simulations of polycrystalline aggregates.%The scatter encountered in the HCF behavior of metallic materials is often explained by the anisotropic elasto-plastic behavior of individual grains leading to a highly heterogeneous distribution of plastic slip.Since fatigue crack initiation is a local phenomenon, intimately related to the plastic activity at the crystal scale, it seems relevant to rely on this kind of modeling to evaluate the mechanical quantities.A preliminary numerical study, based on experimental data drawn from the litterature, was conducted on an electrolytic copper using simulations of 2D polycrystalline aggregates. The effect of the loading path and small artificial defects on the mesoscopic mechanical responses have been analyzed separately. Moreover, the predictive capabilities of some fatigue criteria, relying on the mesoscopic mechanical responses, has been evaluated. It was shown that the macroscopic fatigue limits predicted by a probabilistic fatigue criterion are in accordance with the experimental trends observed in multiaxial fatigue or in the presence of small defects.An experimental campaign is undertaken on an austenitic steel 316L. Low cycle fatigue tests are conducted in order to characterize the elasto-plastic behavior of the material. Load-controled HCF tests, using both smooth specimens and specimens containing an artificial hemispherical surface defect, are carried out to estimate the fatigue limits under various loading conditions (tension, torsion, combined tension and torsion, biaxial tension) and several defect radii. To complete the characterization of the material, the microstructure is studied thanks to EBSD analyzes and the cristallographic texture is measured by X-ray diffraction. These experimental data are used to reproduce, with FE simulations, the HCF tests on 2D and 3D microstructures representative of the austenitic steel. The heterogeneity of the mesoscopic mechanical quantities relevant in fatigue are discussed in relation to the modeling. The results from the FE models are then used along with the probabilistic mesomechanics approach to quantify the defect size effect for several loading paths. The relevance, with respect to the experimental observations, of the predicted fatigue strength distributions is assessed.
|
Page generated in 0.0821 seconds