• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relationships Between Landscape Features and Nutrient Concentrations in an Agricultural Watershed in Southwestern Georgia: An Integrated Geographic Information Systems Approach

Rinaldi, Parisa N 11 May 2013 (has links)
This study examined the influence of landscape features on stream nutrient concentrations within the Ichawaynochaway Creek watershed in southwestern Georgia. Baseflow concentrations of both dissolved (SRP, NO3, NH4) and total (TN, TP) nutrients were measured at 17 sampling sites monthly for a period of six months (July 2012 to January 2013). A long-term dataset (January 2008 to March 2012) was also analyzed for baseflow/stormflow comparisons of dissolved nutrient concentrations. Relationships among land-use, geology, soils, physiographic features and nutrients were analyzed at both the sub-watershed and riparian corridor scales. SRP concentrations were lower and NO3 concentrations higher than reported in previous studies of the region. Due to dry conditions during the sampling period, nutrient input was likely limited to groundwater contributions and land-use effects were minimal. Trends among water quality variables varied between the upper and lower portions of the watershed, suggesting differences in nutrient transport pathways due to spatial variation.
2

IDENTIFICATION AND REMEDIATION OF MICROBIAL CONTAMINANTS IN THE HEADWATERS OF AN AGRICULTURAL WATERSHED

Wei, Xiaoping 31 August 2012 (has links)
No description available.
3

Demonstrating an approach for modeling crop growth and hydrology using SWAT 2009 in Kanopolis Lake Watershed, Kansas

Mollenkamp, Lorinda Larae January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Kyle R. Douglas-Mankin / Aleksey Y. Sheshukov / According the U.S. Environmental Protection Agency’s (EPA) website, our planet is at risk of global warming due to greenhouse gas emissions. The earth’s average temperature has been reported to have risen by 1.4°F over the last century. This seemingly small increase in average planetary temperature has been linked to devastating floods, severe heat waves, and dangerous and unpredictable shifts in our climate (US EPA, 2013a). In the 2012 report, the Intergovernmental Panel on Climate Change states that bioenergy has the potential to significantly mitigate greenhouse gases as long as this is produced in a sustainable manner (Chum, et al., 2011). In light of these facts, research into the sustainable production of bioenergy sources in the United States is currently underway. To ensure that the correct biofuel crop is selected for a given region and to investigate any secondary effects of changing our nation’s agricultural practices to include biofuels, computer models can be very useful. The Soil Water Assessment Tool (SWAT) is a robust, continuous time step model that was developed by the USDA Agricultural Resource Service that can simulate changes in land use and land management and the effect this has on erosion, water quality, and other important factors. This paper describes the preliminary work to create a model of the Kanopolis Lake Watershed that is part of the Kansas River Basin using SWAT 2009. Data pertaining to weather, topography, land use, management, stream flow, and reservoirs was gathered and incorporated into the SWAT model. This was then simulated to obtain the uncalibrated data. SWAT produced unacceptable statistics for both crop yields and for stream flow using the Nash-Sutcliffe Efficiency equation and using percent bias. This suggests that the model must be calibrated to be of use in understanding both the current and future land use scenarios. Once the model is calibrated and validated, it can be used to simulate different biofuel cropping scenarios.

Page generated in 0.0848 seconds