• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 7
  • Tagged with
  • 187
  • 187
  • 113
  • 34
  • 29
  • 29
  • 27
  • 24
  • 24
  • 20
  • 20
  • 20
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Glyphosate resistance in kochia

Godar, Amar Singh January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Phillip W. Stahlman / Kochia [Kochia scoparia (L.) Schrad.] is a weed of great economic importance in the Great Plains and western United States and Canada. This weed is prone to evolving resistance to herbicides. Glyphosate is the most widely used herbicide in glyphosate-resistant crops and chemical fallow, and is extremely valuable to crop production. Anecdotal reports of kochia control failure with glyphosate in western Kansas arose during the mid-2000’s. The objectives of this research were to (1) confirm and characterize glyphosate resistance in kochia and measure its impact in western Kansas, (2) gather information on grower weed management practices before and since glyphosate resistance in kochia was confirmed, and (3) determine if altered absorption and translocation of glyphosate contributes to glyphosate resistance in kochia. Dose-response studies on greenhouse and outdoor grown plants, and shikimate accumulation assays confirmed one kochia population collected in 2007 and eight populations collected in 2010 tolerated three- to eleven-times more glyphosate compared to a known glyphosate-susceptible (GS) population. Furthermore, 40 kochia populations collected in 2012 showed varied response, from slightly elevated tolerance to resistance to 0.84 kg ae ha-1 glyphosate. Further analysis suggested these populations were at different stages of resistance evolution. An online survey revealed that growers increased glyphosate use rate and application frequency, but decreased exclusive use of glyphosate and diversified weed management practices during post- compared to pre-glyphosate confirmation periods. Most survey respondents reported presence of glyphosate-resistant (GR) kochia in at least in few fields, and half reported GR kochia in a majority of fields. Thus, together with the resistance confirmation studies, it is estimated that at least one-third of western Kansas kochia populations have evolved resistance to glyphosate. Nominal differences in absorption and translocation of 14C-glyphosate observed between GS and GR kochia populations likely do not contribute to differential response of these populations to glyphosate. Glyphosate-resistant kochia has become widespread in western Kansas in a short period of time. Use of weed resistance best management practices (BMP) is imperative to sustain the utility of glyphosate in the region.
52

Phytostabilization of multi-metal contaminated mine waste materials: long-term monitoring of influence of soil amendments on soil properties, plants, and biota and the avoidance response of earthworms

Gudichuttu, Vindhya January 1900 (has links)
Master of Science / Department of Agronomy / Ganga M. Hettiarachchi / Mine waste materials from the Tri-State mining region in Kansas, Missouri, and Oklahoma pose environmental hazards. The area is contaminated with trace elements, such as Pb, Zn and Cd, which are transported to surrounding areas through water, wind erosion, and runoff. Phytostabilization or establishing healthy vegetative cover could be used to reduce or control these contaminated materials from further spreading with wind and water. However, further research is needed to monitor the long-term sustainability and assess if high applications of compost amendments could help to facilitate soil reclamation. The overall focus of this thesis was to monitor long-term effects of compost or lime additions at two different rates, with or without other soil amendments, on soil properties, plants, and soil biota. We used the earthworm avoidance test as a screening tool for testing effects of soil amendments on ecotoxicity. In the first field study, pelletized manure compost additions of 448 Mg ha⁻¹ significantly decreased the bioavailable Pb, Zn, and Cd while increasing plant nutrients, vegetative cover, and plant biomass as compared to the contaminated control and the low addition of compost (224 Mg ha⁻¹) over 2.5 years. Plant tissue metal concentrations with compost addition did not show any phytotoxicity in this study. Lime additions did not show any significant effect on any of the measurements. Results from the first study suggest that one time addition of large quantities of compost at 224 to 448 Mg ha⁻¹ can support establishing and maintaining healthy vegetative cover at least for a 2.5 year period. In the second field study, long-term monitoring of the effectiveness of the amendments was studied. Compost was applied at two different rates (45 or 269 Mg ha⁻¹) in 2006. Various chemical properties, microbial activities, and vegetative growth or plant biomass were measured approximately for 4.5 years to evaluate long-term changes in soil quality and sustainability of phytostabilization efforts, when combined or assisted with soil amendments to improve the quality of trace element-contaminated mine waste materials. Plants grown with compost additions of 269 Mg ha⁻¹ showed higher nutrients, biomass, and enzyme activities as compared to plants grown on the contaminated control and with the low addition of compost (45 Mg ha⁻¹) over 4.5 years. Decrease in plant biomass and enzyme activities seen in the high compost treatments by the end of the study period suggested that long-term sustainability of these efforts may require repeated addition of soil amendments every 4 to 5 years. Additionally, a laboratory study was conducted to assess the long-term effects of treatments used in the second field study on ecotoxicity using the avoidance behavior responses of the earthworm Eisenia fetida. There was no mortality of earthworms after a 48 h exposure period of any of these treated and untreated mine waste materials. Avoidance was clear for the contaminated control and the low compost treatment (45 Mg ha⁻¹). Moreover, the contaminated control did show habitat limitation (< 20% of earthworms was found in test soil). Current research studies provide evidence that, high rates of compost applications can be used to stabilize and reduce the bioavailability of trace elements in mine waste materials.
53

The use of nitrogen timing and nitrification inhibitors as tools in corn and wheat production in Kansas

Foster, Timothy J. January 1900 (has links)
Master of Science / Department of Agronomy / David B. Mengel / World population, together with the cost of crop production inputs, is increasing rapidly. The current seven billion people on earth are expected to reach nine billion by 2050 with resulting demands on world food production. In addition, the quality of our environment is being impacted by human activities, including agricultural production and crop fertilization. Nitrogen (N) management is the process of applying N fertilizers in a way to maximize use of N by crops, while minimizing loss to the environment. It is becoming imperative, as a means of increasing crop yields and food supplies, while reducing input usage, and minimizing the impact of N fertilization on the quality of our environment, that improved N application practices be identified and utilized. The objectives for this study were to compare the timing of anhydrous ammonia (AA) fertilizer N applications, fall and spring, with and without two different nitrification inhibitors (NI) as possible tools to enhance yield and Nitrogen Use Efficiency (NUE) in corn (Zea mays) and winter wheat (Triticum aestivum L.) in Kansas. Two different nitrification inhibitors were tested as alternatives, N-Serve (nitrapyrin) produced and marketed by Dow AgroSciences, and an experimental product under development by Koch Agronomic Services LLC. Three differing rates of the experimental product were used to assist in determining the optimal rate for this product. The study was conducted over two growing seasons, 2012 and 2013, which differed significantly in rainfall, rainfall distribution, and resulting NUE. Experiments were established at three sites for both crops in both years, on sites/soils selected for differing potentials for N loss, and mechanisms of N loss. One site was established at the Kansas State University Agronomy North Farm (N Farm), where yield potential was high, and N loss potential was low. A second site was established under irrigation at the Kansas River Valley Experiment Field near Topeka, KS (KRV), on a coarse silt loam soil with high potential for N loss through leaching. The third site was established at the East Central Kansas Experiment Field near Ottawa KS (ECK), on a clay pan soil with a high potential for denitrification loss. Weather conditions together with soil characteristics played a major role in the performance of N timing applications and impacted the response to the use of the inhibitors. In low N loss environments such as the N Farm, fall applications of AA to increase spring time-availability for producers showed minimal negative effects on yield or NUE. When combined with a nitrification inhibitor in the fall, performance was similar to spring application for both corn and wheat. At the KRV site leaching loss or potential loss from fall application was high for corn and wheat in both years, however little impact on NUE with NI use was observed. At the high ECK denitrification site, there was only one N loss potential event leading to inhibitor performance at Ottawa in corn in 2013.
54

Nitrogen use efficiency and nitrogen response of wheat varieties commonly grown in the Great Plains, USA

Dorsey, Nathaniel D. January 1900 (has links)
Master of Science / Department of Agronomy / Nathan O. Nelson / Increasing nitrogen use efficiency (NUE) and nitrogen response in winter wheat could help producers reduce input costs associated with nitrogen fertilizers and decrease the negative environmental impacts of N loss. The objectives of this research were to i) establish if there are genetic differences in NUE and other related parameters among wheat varieties commonly grown in the Great Plains, ii) determine if there are differences in N response among select varieties with a range of NUEs, and iii) determine if NUE influences N response. This information could be useful in future breeding efforts as researchers seek to develop more efficient varieties. This was approached by conducting two separate studies, a large NUE study with 25 winter wheat varieties, and a smaller N Rate study with 4 varieties that represented a range of NUEs based on the preliminary results of the NUE study. The NUE study was conducted over the course of several seasons and locations, with treatments of consisting of N Rate and variety. The experiment was laid out in a strip-plot design and replicated four times at each location. In the 2010-11 and 2011-12 seasons it was planted at the Kansas River Valley Experiment Field in Rossville, KS. In the 2012-13 season the experiment was planted at two locations, one at Silverlake and another at Ashland Bottoms, KS. The experiment was again planted at two locations in the fall of 2013, in Ashland Bottoms, KS, and Hutchinson, KS. The wheat varieties were grown with two N rates, 0 kg N ha⁻¹ and 90 kg N ha⁻¹. Nitrogen use efficiency was calculated as the grain yield per unit of available nitrogen (sum of soil N and fertilizer N) and ranged from 22-30 kg of grain per kg of N and was strongly influenced by variety with a p<0.001. Several other related parameters, such as grain yield, nitrogen utilization efficiency, harvest index, and fertilizer use efficiency were also significantly affected by variety with a p<0.05. These data suggest there are significant genetic differences in how varieties use and transport nitrogen within their tissues to produce grain. The N Rate experiment was planted in two locations during the 2012-13 season at Silverlake and Ashland Bottoms, KS, and planted again in the fall of 2013 at Ashland Bottoms and Hutchinson, KS. This experiment was laid out in a split-plot design with four varieties and four nitrogen rates. The varieties selected for this study were Duster, Everest, Jagger, and Larned and the four N rates were 0, 33.6, 89.7, and 145.7 kg N ha⁻¹. The results showed significant differences in yield response among the varieties at only one location, Ashland Bottoms (p=0041). Although N response at Silverlake was not significant, mean grain yields between varieties was significant (p<0.001). Two additional parameters, NUE and harvest index (HI), were also significantly different between varieties at Silverlake, KS with a p<0.05, while no additional parameters were significant at Ashland Bottoms. Those varieties that had higher response, Everest and Jagger, also tended to have higher NUEs compared to the other two varieties, Duster and Larned. However, because of the contrasting results between locations, additional research is needed to develop firm conclusions. These results provide significant evidence to support varietal differences in nitrogen use due to genetics, and provide the opportunity for breeders to begin developing varieties with higher NUE and improved N response. However, additional research will be required to determine the specific traits responsible for these varietal differences and to determine the suitability of high NUE crops for meeting the nutritional requirements of the future.
55

Kochia scoparia response to dicamba and effective management practices for soybeans

Brachtenbach, David A. January 1900 (has links)
Master of Science / Department of Agronomy / Phillip W. Stahlman / Kochia [Kochia scoparia (L.) Schrad.] is an invasive weed that is common in cropland, pastures and rangeland, rights-of-way, and disturbed areas throughout the western and northern United States and southern Canada. This species aggressively competes with crops, especially in no-till cropping systems, and has evolved resistance to multiple herbicide modes of action. Thus, it has become highly problematic and is difficult to manage. Roundup Ready 2 Xtend™ (Monsanto Co.) soybeans with resistance to dicamba herbicide are expected to be commercialized in 2016, and will offer a new management practice for controlling kochia and other susceptible broadleaf weeds in soybeans. Objectives of this research were to (1) determine whether greenhouse-grown plants from various kochia populations from the central Great Plains differ in susceptibility to postemergence-applied dicamba; (2) compare preemergence versus postemergence control of kochia with dicamba in a greenhouse environment; and (3) investigate various management practices in a systems approach to control kochia in soybeans. GR[subscript]50 values (dose required to reduce plant biomass by 50%) indicated at least an 8-fold difference among 11 kochia populations in susceptibility to postemergence-applied dicamba. Additionally, dicamba at 210 g ha[superscript]-1 applied preemergence caused 95, 88 and 84% mortality and reduced plant biomass (fresh wt.) of the most susceptible and two least susceptible kochia populations from a previous dicamba dose-response study by 99, 68 and 60%, respectively. In comparison, <10% of kochia plants from those populations died and biomass was reduced only 39, 15 and 7%, respectively, when dicamba was applied postemergence. Field experiments demonstrated that preplant conventional tillage followed by nine different in-crop herbicide treatments, and shallow early-spring tillage followed by preplant herbicides (reduced-till) along with the same in-crop herbicides provided greater kochia control than three no-till systems involving early preplant herbicide treatments followed by the same in-crop herbicides. However, despite greater kochia control with the tillage-based systems in 2013, soybean yields were less compared to the three no-till systems. Consequently, in some years the most effective kochia control practices may not result in the highest soybean yields.
56

Analysis of cold tolerance in sorghum [Sorghum bicolor (L.) Moench]

Maulana, Frank January 1900 (has links)
Master of Science / Department of Agronomy / Tesfaye Tesso / Cold temperature stress is an important abiotic constraint to grain sorghum production in temperate regions. In the United States, low temperature in late spring and early fall has limited sorghum production to a narrow growing period. Deployment of cold tolerance traits may widen this window and hence contribute to increased production. The objectives of this study were (1) to determine the effect of early and mid-season cold temperature stress on growth, phenology and yield components of sorghum, and identify key traits that are most sensitive to cold stress at seedling and flowering stages, and (2) to identify new sources of cold tolerance for use in breeding programs. Series of controlled environment (greenhouse/growth chamber) and field experiments were carried out. Three sorghum genotypes of variable response, Shan Qui Red (tolerant), SRN39 (susceptible) and Pioneer 84G62 (unknown) were subjected to cold (15/13ºC day/night) and normal (25/23ºC day/night) temperature at seedling (Experiment I) and flowering (Experiment II) stages. The genotypes were planted in a greenhouse using a 5L polytainer pots. Each pot consisted of a single plant and each plot was represented by three pots. A split-plot design with three replications was used in both experiments with temperature regimes as main plots and genotypes as sub-plots. Three days after emergence, experiment I plants were moved to the growth chamber and subjected to the designated temperature treatments. For experiment II, the treatments were assigned at heading stage immediately before anthesis had begun. The treatments lasted 10 d in both experiments. Data were collected on seedling characteristics and leaf chlorophyll content in experiment I, days to flowering, maturity, and yield components in both experiments, and anthesis duration in experiment II. For the field experiment, 150 sorghum germplasm collections of potential cold tolerance along with tolerant and susceptible checks were evaluated for emergence and seedling traits under early planting (April 13) at soil temperature of 20.1/13.4 ºC max/min. The normal temperature treatment was applied by planting at regular season (May 26) at soil temperature of 30.0/20.4ºC max/min. Twenty-four genotypes selected based on field emergence and seedling vigor were further screened under controlled environment. Early-season stress significantly reduced leaf chlorophyll content, all seedling traits (height, vigor and dry weight), and also delayed flowering and maturity. But it had no effect on final leaf number, plant height and yield components. Genotypic response to early stress was significant for all traits with the susceptible checks having the lowest score for all seedling traits. Mid-season cold stress prolonged anthesis duration, delayed maturity and highly reduced all yield components. Several genotypes among the 150 had higher seedling vigor and emergence than the tolerant check, Shan Qui Red. In conclusion, reduced seedling vigor as a result of early stress had no effect on final yield provided that stand establishment was not compromised while mid season stress is damaging to yield. The wide genetic variation for the traits indicates the potential for improvement of cold tolerance in sorghum.
57

Mapping QTL for fusarium head blight resistance in Chinese wheat landraces

Cai, Jin January 1900 (has links)
Master of Science / Department of Agronomy / Allan Fritz / Fusarium head blight (FHB) is one of the most devastative diseases in wheat. Growing resistant cultivars is one of the most effective strategies to minimize the disease damage. Huangcandou (HCD) is a Chinese wheat landrace showing a high level of resistance to FHB spread within a spike (type II). To identify quantitative traits loci (QTL) for resistance in HCD, a population of 190 recombinant inbred lines (RILs) were developed from a cross between HCD and Jagger, a susceptible hard winter wheat (HWW) released in Kansas. The population was evaluated for type II resistance at the greenhouses of Kansas State University. After initial marker screening, 261 polymorphic simple-sequence repeats (SSR) between parents were used for analysis of the RIL population. Among three QTL identified, two from HCD were mapped on the short arms of chromosomes 3B (3BS) and 3A (3AS). The QTL on the distal end of 3BS showed a major effect on type II resistance in all three experiments. This QTL coincides with a previously reported Fhb1, and explained 28.3% of phenotypic variation. The QTL on 3AS explained 9.7% of phenotypic variation for mean PSS over three experiments. The third QTL from chromosome 2D of Jagger explained 6.5% of phenotypic variation. Allelic substitution using the closest marker to each QTL revealed that substitution of Jagger alleles of two QTL on 3AS and 3BS with those from HCD significantly reduced the PSS. HCD containing both QTL on 3AS and 3BS with a large effect on type II resistance can be an alternative source of FHB resistance for improving FHB type II resistance in wheat. Besides, meta-analyses were used to estimate 95% confidence intervals (CIs) of 24 mapped QTL in five previously mapped populations derived from Chinese landraces: Wangshuibai (WSB), Haiyanzhong (HYZ), Huangfangzhu (HFZ), Baishanyuehuang (BSYH) and Huangcandou (HCD). Nineteen QTL for FHB type II resistance were projected to 10 QTL clusters. Five QTL on chromosomes 1A, 5A, 7A, and 3BS (2) were identified as confirmed QTL that have stable and consistent effects on FHB resistance and markers in these meta-QTL regions should be useful for marker-assisted breeding.
58

Annual cellulose crop options for ethanol and oil cropping intensification for biodiesel feedstocks

Ballard, Todd Curtis January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Scott Alan Staggenborg / Ethanol from cellulose and biodiesel are both advanced biofuels according to the renewable fuel standard version two (RFS2) as part of the Energy Independence and Security Act of 2007. Agricultural production of feedstocks for these fuels can occur as co-products from the primary use of the crops. Use of cellulosic material produced from annual grain and sugar crops does not displace land use from grain and sugar production. Production of corn (Zea mays L.), grain sorghum, dual purpose forage sorghum, sweet sorghum, and photoperiod sensitive sorghum (Sorghum bicolor (L.) Moench) are all primarily driven for products other than cellulosic ethanol. Corn production if driven by grain and silage markets with fodder occasionally used for forage. Grain sorghum production is driven by grain markets and grown primarily in semi arid regions. Dual purpose forage sorghum is used for forage both as baled hay and as silage. Sweet sorghum is produced for sugar and molasses production. Photoperiod sensitive sorghum is produced for baled hay. The current study tests the effect of seeding rate on cellulosic ethanol on each crop. Yellow grease is the most common source of oil for biodiesel production. Intensification of oil crop production may increase the feedstock availability for biodiesel. The current study uses double cropping of spring camelina (Camelina sativa (L.) Crantz), spring canola (Brassica napus L.), sesame (Sesamum indicum L.), safflower (Carthamus tinctorius Mohler, Roth, Schmidt and Bourdeux), soybean (Glycine max L.), and sunflower (Helianthus annuus L.) to search for cropping system options that will produce more oil on an annual basis than full season crops. The full season crop options used were maturity group IV soybean, maturity group V soybean, and full season sunflower. Fertility inputs are inherently less for the non legume crops due to the N fixation ability of symbiotic rhizobium. Canola and camelina are also more sensitive to sulfur deficiency than many crops. Long chain and polyunsaturated fatty acids have higher market values than biodiesel. Separation of these fatty acids from the lipid profile of oil seed crops provides additional demand for oil seed crops. Demand for the crops will drive commodity prices and move land use into oil crop production. The second year of oilseed production provided an opportunity to look at lipid profiles of successfully produced crops during a drought year. Three new discoveries were concluded. Grams cellulosic ethanol g[superscript]-1 stover is not affected by density within the densities considered. Among the double crop options tested only sesame after spring crops was viable in normal years and none were viable in an extreme drought year. Lipid profiles are provided for crops produced in concurrent field growing conditions.
59

Effects of planting practices and nitrogen management on grain sorghum production

Maiga, Alassane January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / P.V. Vara Prasad / Sorghum [Sorghum bicolor (L.) Moench] is a relatively drought- and heat-tolerant cereal crop. Global demand and consumption of agricultural crops for food, feed, and fuel is increasing at a rapid pace. To satisfy the growing worldwide demand for grain, production practices must be well optimized and managed. The objectives of the present study were: to optimize sorghum production by determining the best management practices (planting date, row spacing, seeding rate, hybrid maturity) for growth and yield, to evaluate the agronomic responsiveness of grain sorghum genotypes to nitrogen (N) fertilizer and to develop a partial financial budget to N fertilizer application based on best management practices. In order to meet these objectives, field experiments were conducted in 2009, 2010 and 2011 at Manhattan, Belleville, Ottawa, Hutchinson, Hays, at KSU Experiment Stations and Salina, and Randolph at Private Farms. Results indicated that early planting date (late May) and narrow row spacing (25 cm) providing the most equidistant spacing, produced better plant growth, light interception, yield components (number of grains per panicle, 300-grain weight), and biological yield. Results indicated that with increasing N rate, there was a proportional increase in chlorophyll SPAD meter reading, leaf color scores and number of green leaves. There was a significant difference among hybrids for N uptake, NUE and grain yield. However, there was no effect of N and no interaction between N and hybrid on grain yield. Over all, the genotypes with high NUE also had higher grain yield. Economic analysis using partial budget indicated that all N levels had positive gross benefit greater than control at all locations. However, the response varied across locations. Our research has shown that sorghum responds to changing management practices and opportunities exist to increase grain yield by optimizing planting date, seeding rate, row spacing, N application and selection of genotypes.
60

Effect of row spacing and seeding rate on grain sorghum tolerance of weeds

Hewitt, Cade Alan January 1900 (has links)
Master of Science / Department of Agronomy / J. A. Dille / Weed control in grain sorghum has always presented a challenge to producers in the semi-arid Great Plains. Cultural control tactics such as narrowing of row spacings and increasing seeding rates can be effective control methods. The objective of this research was to determine the row spacing and seeding rates that maximizes yield while suppressing weeds. Grain sorghum row spacings of 25, 51, and 76-cm and seeding rates of 75,000, 100,000, 125,000, and 150,000 seeds ha[superscript]-1 were evaluated in Kansas at Beloit and Manhattan in 2013 and Beloit, Manhattan, and Hays in 2014. Grain sorghum growth and yield response were measured in response to natural weed communities. After evaluation, Beloit was considered a low weed pressure site while Manhattan and Hays were considered to be moderate and high weed pressure sites, respectively. Grain sorghum biomass was different while weed biomass was consistent across row spacings. Yield loss equations and profit functions were derived to determine the amount of grain yield and $ ha[superscript]-1 loss from each of the three locations. Yield and profit lost was greatest amongst weedy observations. Results indicated that grain sorghum grown on wide row spacings and seeding rates of 125,000 seeds ha[superscript]-1 out yielded all other treatments under a low weed pressure site (Beloit) and narrow row spacings out yielded wider spacings in moderate and high weed pressure sites (Manhattan and Hays). These results imply that a Kansas grain sorghum producer should evaluate potential weed pressure before determining a final row spacing and seeding rate.

Page generated in 0.0607 seconds