• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 294
  • 294
  • 294
  • 99
  • 94
  • 77
  • 65
  • 58
  • 34
  • 27
  • 23
  • 22
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Mathematical Models of <i>Zea mays</i>: Grain Yield and Aboveground Biomass Applied to Ear Flex and within Row Spacing Variability

Ballard, Todd Curtis 01 December 2008 (has links)
Field studies were conducted during the summers of 2007 and 2008 at the Agricultural Research and Education Complex, Western Kentucky University, Warren County, KY and commercial production fields in Caldwell County, KY, Warrick County IN, and Vanderburgh County, IN. The goals of these studies were to further validate the Duncan grain yield model, the Russell aboveground biomass model, and to study the effect of inconsistent spacing within rows on Zea mays L. yield. Plant spacing other than uniform decreases grain yield and profitability. The population experiments conducted at the Warren County location were a randomized complete block design with three planting densities, three varieties (c.v. DeKalb DKC6547, DeKalb DKC6346, DeKalb DKC6478) in 2007 and (DeKalb DKC6478, DeKalb DKC6342, and DeKalb DKC6544) in 2008, and three replications. Seeds were planted in rows 76 cm apart and 9.1 m long with four rows per plot in a no-till system on a Crider Silt Loam with pH of 6.8 and 1.5% organic matter. The effect of variable within row spacing was evaluated in commercial production fields by randomly selecting five adjacent rows of 5.3 meters in length at each location. Grain yield for each row was then curve fitted both linearly and exponentially. Minimizing interspecies competition was essential to evaluating the effects of competition within Zea mays L. A burn-down application of 2,4-D and glyphosate was used prior to planting. The most common weeds in the plots were Sorghum halepense L. (johnsongrass), Trifolium repens L. (white clover), and Taraxacum officinale L. (common dandelion) . Glyphosate was reapplied throughout the growing season due to reemergence of S. halepense and Ipomoea hederacea Jacq. (ivyleaf morningglory). The weight of each ear was recorded and one row from each plot was randomly selected to shell. The moisture content was measured from a subsample twice each row using an electrical conductivity moisture meter. The mean of the two moisture readings was used as the moisture content from the plot. Cob weights from shelled ears were recorded to determine the grain/cob mass ratio. This ratio was used to project the grain weight for the remaining harvested rows. Duncan’s grain yield model and Russell’s biomass model were curve fitted to the data for areas of 0.00040 hectares at the p < 0.05 significance level or greater in all population density plots. Individual plant grain masses were curve fitted to Duncan’s model with p < 0.05 significance in 3 out of 15 plots. Grain mass was negatively correlated (R < 0) with standard deviation of within row spacing in 14 of 15 plots. A linear fit to this trend was significant in only 2 of 15 plots. The Duncan yield curve and the Russell aboveground biomass model fit all 6 genotype by environment interactions for 2007 and 2008 to the α = 0.05 level of confidence when evaluated over a 5.3 meter length on 76.2 cm wide rows. Individual plants fit linearly at α = 0.05 in 9 out of 15 plots. Individual plants fit the Duncan yield curve at α = 0.05 in 4 out of 15 plots. Standard deviation of within row spacing fit grain yield loss significantly at &#; = 0.05 in two of 15 plots. The individual plant spacing and local population density collectively fit nine plots significantly at α = 0.05 or better.
232

Economic Impacts of Drought on Kentucky Corn, Hay, and Soybeans

Craft, Kortney E. 01 May 2011 (has links)
Understanding climatic impacts is important if we are to comprehend the relationship between climate and society. Weather phenomena can have environmental, economical, and social impacts. Drought is the natural hazard that affects people the most. It is also the most complex and least understood. There is no one universally accepted definition for drought which makes its examination difficult. Droughts’ duration is also difficult to determine because it has no clearly defined onset and end. Also, drought varies both geographically and temporally making uniform drought monitoring difficult. Since drought is difficult to monitor and access, drought impacts are often poorly documented. The purpose of this research was to quantify (in dollars) the impacts of drought on Kentucky’s agriculture. Drought has been recorded historically in Kentucky since the late 1800s. According to the Kentucky Climate Center, the most significant drought years occurred in 1930-31, 1940-42, and 1952-55. Analyses of these years are included as well as the most recent significant drought years in 1987-88, 1999- 2000 and 2007. Four of Kentucky’s important commodities, including corn, soybeans, hay, and beef cattle, were examined during the significant drought years. The total state revenue for these commodities was analyzed during severe drought years vs. non-severe drought years. The result of this research identified how much of a deficit severe drought causes on Kentucky revenue for each of these commodities. This research is important to the general public as well as planners and policy makers. Proper documentation of drought impacts will help identify drought vulnerabilities and result in better risk management and mitigation. Key Words: Drought, Agriculture, Impact Assessment
233

Investigation of Yield and Quality of Grafted Heirloom and Hybrid Tomatoes

Flomo, Stephen T. 01 May 2010 (has links)
Tomatoes (Lycopersicon esculentum Mill) are one of the most popular vegetable crops grown for fresh market and processing in the U.S. Grafting involves the uniting of a shoot or bud scion with a rootstock to form a compound plant, mainly for managing soil-borne diseases and increasing crop yield. The objectives were to examine the effects of reciprocal and self grafts on tomato fruits, number of fruits, weight, and quality of the cultivars, ‘Cherokee Purple’, ‘Mister Stripey’, ‘Crista’, and ‘Maxifort’. Grafted seedlings were planted at WKU Farm on raised beds, protected with red or black plastic mulch under drip irrigation system with regular supply of water. Matured fruits were harvested, weighed, and number of fruits from each plant recorded. The highest yielding combination was the scion ‘Cherokee purple’ on ‘Maxifort’ rootstock, which produced 304g and 745g heavier fruits than ‘Crista’ and ‘Mister Stripey’, respectively. The quality grade of ‘Crista’ was superior to ‘Cherokee Purple’ and ‘Mister Stripey’ while ‘Mister Stripey’ produced the greatest number of fruits but were of lower quality. Fruits from plants grown on red plastic mulch were significantly larger, heavier, and were of higher quality than those grown on black plastic mulch. However, plants grown on black plastic mulch produced significantly more fruits per plant. There was little advantage for self-grafting of ‘Cherokee Purple’ and ‘Crista’. However, ‘Mister Stripey’ was responsive to self-grafting and merits further investigation. The best rootstock was ‘Maxifort’ which produced the biggest, heaviest fruits of the best quality. ‘Cherokee Purple’ as a scion produced the largest and heaviest fruits, while ‘Crista’ produced the highest quality fruits. ‘Mister Stripey’ was the most prolific in terms of number of fruits per plant.
234

Heirloom and Hybrid Tomato Yield and Quality in Organic and Conventional Production Systems

Edlin, Diana J. 01 December 2009 (has links)
Due to the recent changes in the economy of Kentucky tobacco production, some producers are seeking an alternative crop that will provide similar economic gains to tobacco without needing more acreage. Tomatoes are an existing crop in Kentucky that have been declining in acreage over the last five years. There is evidence to suggest that, through niche and local marketing, tomatoes may be able to fill the void left by tobacco. However, there is concern among producers that they will lose yield and/or quality if they switch to one of these niche production systems or cultivars. A two year study at Western Kentucky University compared the yield and quality of three tomato cultivars, two heirlooms and one hybrid, under organic and conventional management techniques to see if producers concerns are valid. The heirloom cultivars used were 'Cherokee Purple' (CP) and 'Mr. Stripey', (MS) the hybrid cultivar was 'Crista' (CR). The study was a split block design, with four randomized replications within each block. Plants were grown under black plastic mulch, with drip irrigation under the mulch. Plants were harvested weekly throughout the season and data were collected on individual fruit weight, size, grade and the number of fruit produced per plant. Production and quality were compared between management techniques for each cultivar, and the cultivars were compared to each other under individual management techniques. When comparing organic and conventional management practices, CP produced significantly (p<.05) larger, heavier, and higher quality fruit under organic practices and showed no significant differences in fruit number in 2008. MS and CR showed no significant differences between production systems for fruit weight or size, CR produced significantly higher quality fruit under conventional treatment and MS produced significantly more fruit per plant in 2008. In 2009, CP did not produce enough fruit under organic management to allow statistical comparison between management systems. MS however did not show any significant differences between management systems for any of the traits studied. CR produced significantly larger fruit under organic management, but no other differences were observed. When comparing cultivars in 2008, CP and CR produced fruit of similar weight but significantly heavier than MS under both production systems. CP produced the largest fruit under organic management, with CR following and MS producing the smallest fruit. Under conventional management, CP and CR produced fruit of similar size and both were larger than MS. MS produced the highest quality fruit under organic management, and CR produced the nicest grade under conventional management. No differences were seen for number of fruit per plant between cultivars under organic management, while MS produced the most fruit per plant under conventional management. In 2009 CP did not produce enough fruit to be statistically compared to the other cultivars under organic management. MS and CR produced fruit of similar weight under both organic and conventional management, while CP produced the greatest weight under conventional management. CR produced larger fruit than MS under organic management, while under conventional management CP and CR were of similar size as were CR and MS, but CP was significantly larger than MS. No significant differences were found between cultivars for fruit grade or number of fruit per plant under either management system in 2009.
235

Classification and Fertility of Soils in the Big South Fork National River and Recreation Area Based on Landscape Position and Geology

Blair, Ryan H 01 May 2010 (has links)
The Big South Fork National River and Recreation Area encompasses more than 50,585 hectares (125,000 acres) of the Cumberland Plateau along the border of Tennessee and Kentucky. Highly dissected and steep terrain have made accessibility to much of the park limited, thus little work has been done to investigate the formation of these soils. Seven native soil profiles were selected for chemical and physical analysis representing Pennsylvanian-aged acidic sandstone and shale geology and landforms. The objectives of this study included the characterization of selected native profiles by physical and chemical analysis, as well as classification using US Soil Taxonomy, to determine baseline soil fertility through chemical analysis, to provide fertilizer recommendations for Bicolor Lespedeza (Lespedeza bicolor) to be grown as wildlife food plots. The parent materials and site- specific geology, including the Pennington Formation, were compared to the profiles in order to establish any relationships that might exist. The methods of chemical analysis included: total carbon analysis, cation exchange capacity, percent base saturation, pH, particle size analysis, KCl total acidity, total elemental analysis and Mehlich I extraction. From the data, soils examined from an upland summit have the lowest Mehlich I extractable phosphorus (M1P) ranging from 0.8-3.14 mg kg-1, and this soil was classified as a Typic Hapludult. Soils examined on backslopes and sideslopes had M1P values ranging from 0.3-11.53 mg kg-1 and these soils were classified as either Lithic Dystrudepts or Typic Dystrudepts. The footslope soils examined have M1P values ranging from 1.95-19.79 mg kg-1 and were classified as Typic Hapludults. Floodplain soils had M1P values from 7.69-56.85 mg kg-1 and were classified as Fluventic Dystrudepts. Landscape position and parent material play major roles in the formation of soils, and their degree of weathering controls the amount of plant available nutrients. Using geologic and topographic maps for comparison, it was concluded that the development of these soils was directly related to the underlying geology and the surrounding topography throughout various landscapes. This information can be used as a guide to aid in predicting the chemical and physical properties of native soils on the Cumberland Plateau.
236

SOIL MANAGEMENT AND NITROGEN DYNAMICS IN BURLEY TOBACCO ROTATIONS

Zou, Congming 01 January 2015 (has links)
Agronomic practices, including tillage, crop rotation and N fertilization, have been developed to efficiently manage soil N dynamics and crop N nutrition. These practices can affect soil organic carbon (SOC) and soil total nitrogen (STN) sequestration, and consequently influence soil nitrogen mineralization (SNM) and crop N nutrition. However, little research has been systematically and simultaneously conducted to examine the effect of agronomic management on (1) SOC and STN stocks; (2) SNM; and (3) crop N nutrition. Burley tobacco (Nicotiana tobacum L.) is a N demanding crop and subject to inefficiency in N fertilization. Moreover, conservation tillage and rotation have been integrated into traditionally tillage intensive tobacco cropping systems. Thus, a tobacco tillage and rotation study was used to test how agronomic practices can affect N dynamics and crop N status in a series of sequential experiments. Firstly, different tobacco production systems were utilized to investigate the effects of tillage and rotation on soil aggregate stabilization and associated SOM sequestration. No-tillage and rotation management enhanced SOC and STN stocks, mainly by increasing the proportion of macroaggregates and SOC and STN concentrations. Secondly, a series of studies were conducted on SNM, including: (1) comparison of laboratory and in situ resin-core methods in estimating SNM; (2) evaluation of the influence of N fertilizer application on SNM; and (3) comparison of chemical indices for predicting SNM across management treatments over time. Laboratory method had different results relative to in situ method due to sample pretreatments. Fertilizer N application had a priming effect on SNM, but priming depended on both the N fertilizer rate and the background SOM level. The effect of rotation/tillage treatments on SNM was stable across years and SOC appeared to be the best indicator of SNM among other soil carbon and N estimates. Thirdly, a N fertilizer study for different tillage systems was conducted in 2012 and 2013. Crop parameters and plant available N (PAN) were collected to investigate the impact of tillage on tobacco production. Crop parameters showed that no-tillage can result in N deficiency in dry years. Similar PAN for both tillage methods suggested N deficiency in no-till tobacco was due to the crop’s lower N uptake capacity. In 2014, tobacco root analysis confirmed that no-tillage can result in less root exploration of the soil volume than conventional tillage.
237

CONSERVATION AGRICULTURE IN KENTUCKY: INVESTIGATING NITROGEN LOSS AND DYNAMICS IN CORN SYSTEMS FOLLOWING WHEAT AND HAIRY VETCH COVER CROPS

Shelton, Rebecca Erin 01 January 2015 (has links)
Unintentional nitrogen (N) loss from agroecosystems produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, adoption of conservation agricultural management practices, such as no-till and cover cropping, has increased. This study assessed N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems across a year. Three systems were evaluated: 1) an unfertilized organic system with cover crops Vicia villosa, Triticum aestivum, or a mix of the two; 2) an organic system with a Vicia cover crop employing three fertilization schemes (0 N, organic N, or a cover crop N-credit approach); 3) a conventional system with a Triticum cover crop and three fertilization techniques (0 N, urea N, or organic N). During cover crop growth, species affected N leaching but gaseous emissions were low across all treatments. During corn growth, cover crop and fertilizer approach affected N loss. Fertilized treatments had greater N loss than unfertilized treatments, and fertilizer type affected gaseous fluxes temporally and in magnitude. Overall, increased N availability did not always indicate greater N loss or yield, suggesting that N conserving management techniques can be employed in conservation agriculture systems without sacrificing yield.
238

Animal and Pasture Responses to Grazing Management of Chemically Suppressed Tall Fescue in Mixed Pastures

Williamson, Jessica A 01 January 2015 (has links)
Treatment of endophyte-infected tall fescue [Lolium arundinaceum (Schreb.) Darbysh] with the broad leaf herbicide Chaparral® can mitigate fescue toxicosis and enhance forage quality by suppressing seedhead emergence. Applying the herbicide to fescue pastures also reduces forage mass and promotes severe spot grazing when pastures are continuously grazed. A grazing experiment was conducted with steers (2013) and heifers (2014) to evaluate animal and plant responses in fescue-bluegrass (Poa pratensis L.) mixtures treated with Chaparral to determine the effects of grazing management on pasture carrying capacity, nutritive values, botanical composition, and animal performance. Continuous and rotational (i.e., four subdivisions to provide a 7-d grazing period and a 21-d rest period) grazing treatments were assigned to six, 3.0-ha fescue-bluegrass pastures in a randomized complete block design with three replications. Each pasture had six tester animals, and stocking rates were varied using put-and-take animals. Pastures were grazed from 16 April to 8 July 2013 (Year 1) and 20 May to 12 Aug (Year 2) and cattle were blocked by body weight for allotment to pastures. Pasture carrying capacities were greater (P = 0.07) for rotational compared to continuous pastures across both years. Calves on rotationally grazed pastures had greater average daily gain (P = 0.03) and gain per acre (P = 0.05) than those on the continuous treatment across both years. Canopies of continuously grazed pastures contained less (P = 0.01) tall fescue than those in rotationally grazed pastures. Herbage in pre-grazed paddocks had less NDF and ADF than post-grazed paddocks and continuously grazed pastures in 2013 (P < 0.10), but did not differ in 2014 (P > 0.10). In vitro digestible dry matter was greater (P = 0.07) in pre-graze rotational pastures in 2013 compared with continuous and post-graze rotational, and IVDDM did not differ (P < 0.01) between pre-graze rotational and continuous in 2014, but was greater than post-graze rotational. Crude protein was lower (P = 0.06) in both years in post-graze rotational pasture than in continuous or pre-graze rotational pasture, which did not differ. In 2013, there was no difference (P = 0.60) in root WSC among treatments; however, in 2014, WSC levels were greater (P = 0.01) in rotationally grazed pastures compared with continuously grazed pastures. This grazing experiment indicated that rotational grazing of Chaparral treated fescue-bluegrass mixtures can improve both animal performance and the sustainability of pasture productivity.
239

NITRATE REDUCTION COUPLED TO IRON(II) AND MANGANESE(II) OXIDATION IN AN AGRICULTURAL SOIL

Pyzola, Stephanie 01 January 2013 (has links)
New evidence shows iron(II) oxidation is strongly coupled to nitrate reduction under anaerobic conditions in freshwater sediments and agricultural soils. However, the contribution of iron(II) oxidation to nitrate reduction is unknown. Furthermore, oxidation of manganese(II) by nitrate has been largely overlooked. This study investigated nitrate-dependent iron(II) and manganese(II) oxidation in an agricultural soil (Sadler silt loam) using stirred-batch kinetic techniques with native soil organic carbon (SOC) as the electron donor and included addition of amendments (hydrogen gas and wheat residue). In the presence of native SOC, nitrate-dependent Fe(II) and Mn(II) oxidation occurred at early stages of the reaction while organic carbon participated at longer times. Contributions of iron(II) and manganese(II) oxidation to nitrate reduction were 19% and 25%, respectively. This is significant in light of excess SOC relative to total Fe and Mn in the Sadler soil. Addition of hydrogen gas lowered the contribution of iron(II) oxidation to nitrate reduction to 10%, while addition of plant residue raised this value to approximately 55%. Manganese(II) oxidation contributed 50% to nitrate reduction under hydrogen amended conditions. These coupled processes involving Fe(II) and Mn(II) oxidation are an underappreciated aspect of the nitrogen cycle and merit consideration in future studies.
240

GRASSLAND SUSTAINABILITY IN KENTUCKY: CASE STUDIES QUANTIFYING THE EFFECTS OF CLIMATE CHANGE ON SLUG HERBIVORY IN PASTURES AND DIFFERENT HOME LAWN SYSTEMS ON TURF GREENHOUSE GAS EMISSIONS

Weber, Daniel Adam 01 January 2014 (has links)
Grasslands comprise the greatest biome by land area, are sensitive to environmental factors affected by climate change, and can impact future climate change through their ability to store and release greenhouse gasses (GHGs). I performed two studies: 1) evaluated the effects of increased temperature and precipitation on slug herbivory/abundance and pasture forage production; 2) quantified different homeowner lawn system effects on soil-to-atmosphere GHG emissions. Climate change will likely affect pasture forage production, with implications for slug herbivory and abundance. I found little evidence that slugs have or will have significant effects on pasture production or plant community. Warming altered the abundance of slugs and modified seasonal trends, increasing slug abundance in spring/winter and reducing it in late-summer/fall, through both direct effects and changes in plant community and forage quality. Home lawns vary in levels of management, influencing the exchange of GHGs. I quantified the effects of three common home lawn systems of central Kentucky on GHG emissions, but found no significant differences in CO2, N2O, and NH3 fluxes. My research suggests that slug herbivory is not a dominant ecological process in Kentucky pastures and that common home lawn systems have similar soil-to-atmosphere GHG emissions.

Page generated in 0.0956 seconds