• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of NBPT-DCD formulated urea to reduce N2O emissions and N losses from fall banded fertilizer

Williamson, Eryn 20 September 2011 (has links)
A two-year field study and two incubation studies were conducted to evaluate incorporating urea with a urease and nitrification inhibitor to reduce N2O and N losses from fall banded fertilizer. In each year of the field experiment, five fertilizer treatments (fall banded NBPT-DCD urea, conventional urea, calcium nitrate, spring banded conventional urea and control) were applied at three sites. The effect of incorporating urease and nitrification inhibitors with urea was not consistent in our studies. The application of fall banded NBPT and DCD did not result in greater agronomic performance. Moreover, the addition of inhibitors to urea did not reduce nitrous oxide emissions in the field. The addition of inhibitors resulted in significantly less cumulative nitrous oxide emissions compared to conventional urea in only one of two laboratory experiments. In conditions where fertilizer was not generally susceptible to large losses, the effects of urease and nitrification inhibitors may not be evident.
2

Use of NBPT-DCD formulated urea to reduce N2O emissions and N losses from fall banded fertilizer

Williamson, Eryn 20 September 2011 (has links)
A two-year field study and two incubation studies were conducted to evaluate incorporating urea with a urease and nitrification inhibitor to reduce N2O and N losses from fall banded fertilizer. In each year of the field experiment, five fertilizer treatments (fall banded NBPT-DCD urea, conventional urea, calcium nitrate, spring banded conventional urea and control) were applied at three sites. The effect of incorporating urease and nitrification inhibitors with urea was not consistent in our studies. The application of fall banded NBPT and DCD did not result in greater agronomic performance. Moreover, the addition of inhibitors to urea did not reduce nitrous oxide emissions in the field. The addition of inhibitors resulted in significantly less cumulative nitrous oxide emissions compared to conventional urea in only one of two laboratory experiments. In conditions where fertilizer was not generally susceptible to large losses, the effects of urease and nitrification inhibitors may not be evident.
3

Productivity and greenhouse gas emissions from longterm stockpiled soils treated with organic amendments

Laskosky, Jorden 28 September 2015 (has links)
Reclamation success is highly dependent upon final soil quality of stockpiled soils, such as those found Cold Lake Oil Sands Region. Stockpiled soils, however, are generally poor in quality. Soils were amended with, biochar (BC), humalite (HU), a sub-bituminous coal; and peat (PT), as well as 50:50 blends of biochar:humalite (BCH) and biochar:peat (BCP). These amendments were applied at rates of 0, 6.55, 13.1 and 26.2 g C kg-1 each. Biochar, PT, and BCP applied at the rate of 26.2 g C kg-1 were found to reduce N2O emissions by 34, 54, and 70%, respectively, relative to the control. Within the bioassay, BC and PT amendment resulted in a 38 and 40% increase in dry matter yield (DMY) respectively. Finally, amendment typically resulted in significant net decreases in Olsen P values, while nitrate and ammonium concentrations were high in PT amended soils. In general, PT had the best overall performance. / October 2015
4

The effect of hydrologic pulses on nitrogen biogeochemistry in created riparian wetlands in midwestern USA

Hernandez, Maria Elizabeth 12 September 2006 (has links)
No description available.
5

Grassland Management and Diversity Effects on Soil Nitrogen Dynamics and Losses

Hoeft, Ina 27 February 2012 (has links)
Grünland spielt eine große Rolle in der Landnutzung und nimmt ein Drittel der landwirtschaftlich genutzten Fläche von Europa ein. Als Konsequenz der Intensivierung landwirtschaftlicher Bewirtschaftungsmaßnahmen der letzten 60 Jahre nahm die Produktivität des Grünlands zu während die Diversität dieser Systeme abnahm. In Grünland-Ökosystemen spielt Stickstoff (N) eine Schlüsselrolle – N bedingt die Primärproduktion und beeinflusst die Biodiversität. Zudem kann eine steigende N-Verfügbarkeit gasförmige Emissionen, wie z.B. Distickstoffoxid (N2O) und Stickstoffmonoxid (NO) fördern, die eine große Rolle in der Atmosphäre spielen und zur globalen Erwärmung beitragen. Eine höhere Nitratauswaschung (NO3-) aus Böden kann eine Gefahr für die Grundwasserqualität sein. N-Verluste durch Ausgasung von N2O und NO sowie NO3--Auswaschung sind dabei die Folgen der mikrobiellen Prozesse Denitrifikation und Nitrifikation. In dieser Studie haben wir den Effekt von unterschiedlichen Bewirtschaftungsintensitäten und funktioneller Pflanzendiversität auf die N-Verluste und Ökosystemfunktionen untersucht. Die Studie ist Teil des Excellenzclusters „Funktionelle Biodiversitätsforschung“ der Georg-August-Universität Göttingen und wurde durch das Niedersächsische Ministerium für Wissenschaft und Kultur finanziert. Die Studie wurde im Rahmen von zwei interdisziplinären Projekten (BIOMIX & GRASSMAN) von 2008 bis 2010 im Solling, Niedersachsen, Deutschland durchgeführt. Wir untersuchten von Rindern und Schafen beweidetes Grünland (BIOMIX) und gemähtes Grünland mit unterschiedlichen Bewirtschaftungsintensitäten (GRASSMAN). In beiden Projekten wurde die funktionelle Pflanzendiversität durch Herbizide eingestellt. Der Fokus unserer Arbeit lag auf den N-Verlusten (N2O and NO Emissionen, NO3--Auswaschung) und der N Dynamik (Netto und Brutto Mineralisation). In GRASSMAN berechneten wir zusätzlich die N-Nutzungseffizienz und die N-Rückhalteeffizienz auf Ökosystemebene. Dabei ist die N-Nutzungseffizienz das Produkt der Aufnahmeeffizienz (definiert als N-Aufnahme der Pflanze pro verfügbares N) und der N-Nutzungseffizienz auf Pflanzenebene (definiert als Produktivität pro N-Aufnahme der Pflanze). Darüber hinaus berechnen wir N-Rückhalteeffizienz in Böden als einen Index, der das Verhältnis von N-Verlusten zu dem im Grünland verbleibenden N beschreibt. In BIOMIX haben wir die Auswirkung von Beweidung und Pflanzenarten-zusammensetzung auf N2O and NO Emissionen untersucht. Die mit einem Herbizid gegen Dikotyle vorbehandelten Weiden wurden mit Rindern oder Schafen Rotationsweise beweidet. Mittlere N2O Emissionen lagen bei 38.7 µg N2O-N m-2 h-1, mittlere NO Emissionen betrugen 2.4 µg NO-N m-2 h-1. Kumulative NO-N Emissionen waren höher auf den von Schafen beweideten Flächen als auf den von Rindern beweideten Flächen. In einem kontrollierten Applikations-Experiment führte die Behandlung mit Rinderurin zu höheren N2O Emissionen als die Behandlung mit Schafurin. Die Emissionshöchstwerte von 1921 µg N2O-N m-2 h-1 bei Behandlung mit Rinderurin im Vergleich zu 556 µg N2O-N m-2 h-1 bei Schafurin standen im Zusammenhang mit unterschiedlichen N-Einträgen pro Ausscheidung der Tiere. Die Emissionshöchstwerte der mit Dung behandelten Flächen waren im Vergleich mit den jeweiligen Urinbehandlungen viel geringer. Die N2O Emissionsfaktoren betrugen 0.4% für Rinderurin, 0.5% für Schafurin, 0.05% für Rinderdung und 0.09% für Schafdung. Sowohl das Beweidungs-Experiment, als auch das kontrollierte Applikations-Experiment zeigten, dass die Pflanzenartenzusammensetzung auf N-Emissionen im Vergleich zum Einfluss der Weidetierart auf N-Emissionen unbedeutend war. Trotz höherer N-Einträge auf Rinderweiden waren die N-Emissionen aus der Schafbeweidung höher. Wir führten dies auf die gleichmäßigere Verteilung von Schafs-Exkrementen im Vergleich zu Rindern-Exkrementen zurück. In GRASSMAN untersuchten wir die Auswirkungen von unterschiedlichen Bewirtschaftungsregimen (Düngung und Schnittintensität) und Pflanzenarten-zusammensetzung auf die N-Verluste (N2O Emissionen, NO3- Auswaschung) und die N-Dynamik (Netto und Brutto Mineralisation) und kalkulierten die N-Nutzungseffizienz und die N-Rückhalteeffizienz. Ein dreifaktorielles Design mit folgenden Faktoren wurde über einen Zeitraum von zwei Jahren etabliert: Düngung (180 – 30 – 100 kg NPK ha-1 yr-1 und keine Düngung), Schnittintensität (ein- und dreimal pro Jahr) und Pflanzenartenzusammensetzung (eine unbehandelte Kontrolle, eine Dikotyl-erhöhte und eine Monokotyl-erhöhte Grasnarbe). In 2009 wurden die N2O Emissionen erheblich von beiden Bewirtschaftungsfaktoren (Düngung und Schnittintensität) beeinflusst, während in 2010 nur die Düngung die N2O Emissionen beeinflusste. In 2009 wurden NO3- Auswaschungsverluste durch Düngung und in 2010 von beiden Bewirtschaftungsfaktoren (Düngung und Schnittintensität) beeinflusst. Die Netto N-Mineralisation Raten wurden in 2009 nur von der Düngung beeinflusst. In 2010, zeigte nicht nur die Düngung, sondern auch die Schnittintensität einen Einfluss auf die Netto N-Mineralisation Raten. Weder die Bewirtschaftung (Düngung) noch die Pflanzenartenzusammensetzung hatte einen Einfluss auf die Brutto N-Mineralisation. Die N-Nutzungseffizienz wurde vor allem durch die Düngung und als weiterer Faktor durch die Schnittintensität in 2009 beeinflusst, welche 41% bzw. 3% der Varianz erklärten. In 2010 hatte die Düngung mit 24% der erklärten Varianz einen geringeren Effekt auf die N-Nutzungseffizienz, während die Auswirkungen der Schnittintensität (12%) und die Pflanzenartenzusammensetzung (6%) stärker ausgeprägt waren. Die N-Nutzungseffizienz war auf ungedüngten Flächen größer als auf gedüngten, in den dreimal geschnittenen Flächen höher als in den einmal geschnittenen, und in der unbehandelten Kontrolle höher als in der Monokotyl-erhöhte oder Dikotyl-erhöhte Grasnarbe. Düngung verringert die N-Nutzungseffizienz durch die Abnahme in der N-Aufnahmeeffizienz und der N-Nutzungseffizienz auf Pflanzenebene, während die Schnittintensität und die Pflanzenartenzusammensetzung nur durch die N-Aufnahmeeffizienz beeinflusst werden. Die N-Rückhalteeffizienz wurde nur für 2010 berechnet und wurde durch die Düngung und die Pflanzenartenzusammensetzung mit 22% und 17% der erklärten Varianz beeinflusst. N-Rückhalteeffizienz nahm in der Reihenfolge unbehandelte Kontrolle > Dikotyl-erhöhte > Monokotyl-erhöhte Grasnarbe mit einem signifikanten Unterschied zwischen der unbehandelten Kontrolle und der Monokotyl-erhöhten Grasnarbe ab. Die N-Rückhalteeffizienz ist mit dem mikrobiellen Ammonium (NH4+) und der mikrobiellen Biomasse hoch und mit der N-Aufnahme der Pflanzen nur gering korreliert, was die Bedeutung der mikrobiellen N Retention im System Boden-Pflanze unterstreicht. Unsere Ergebnisse zeigen, dass die Bewirtschaftung der wichtigste und bestimmende Faktor der Ökosystemfunktionen eines Grünlands ist. Düngung, Schnittintensität und Beweidung beeinflussen die N-Nutzungseffizienz, die N-Rückhalteeffizienz und die N-Verluste. Die Zusammensetzung der botanischen Grasnarbe hat einen geringen Einfluss auf den N Kreislauf oder die N-Nutzungs- und die N-Rückhalteeffizienz. Wobei die Pflanzenartenzusammensetzung der unbehandelten Kontrolle (~70% Monokotyle und ~30% Dikotyle), die sich unter der extensiven Langzeit-Bewirtschaftung eingestellt hatte, die höchsten Effizienzen zeigte - sowohl eine Erhöhung der Monokotyledonen als auch eine Erhöhung der Dikotyledonen führte zu einer Verringerung der Effizienzen. Darüber hinaus sind N-Nutzungs- und N-Rückhalteeffizienz geeignete Werkzeuge, die sich zur Evaluierung ökologischer Nachhaltigkeit von Pflanzenartenzusammensetzungen und Management-Praktiken im Grünland eignen.
6

CONSERVATION AGRICULTURE IN KENTUCKY: INVESTIGATING NITROGEN LOSS AND DYNAMICS IN CORN SYSTEMS FOLLOWING WHEAT AND HAIRY VETCH COVER CROPS

Shelton, Rebecca Erin 01 January 2015 (has links)
Unintentional nitrogen (N) loss from agroecosystems produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, adoption of conservation agricultural management practices, such as no-till and cover cropping, has increased. This study assessed N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems across a year. Three systems were evaluated: 1) an unfertilized organic system with cover crops Vicia villosa, Triticum aestivum, or a mix of the two; 2) an organic system with a Vicia cover crop employing three fertilization schemes (0 N, organic N, or a cover crop N-credit approach); 3) a conventional system with a Triticum cover crop and three fertilization techniques (0 N, urea N, or organic N). During cover crop growth, species affected N leaching but gaseous emissions were low across all treatments. During corn growth, cover crop and fertilizer approach affected N loss. Fertilized treatments had greater N loss than unfertilized treatments, and fertilizer type affected gaseous fluxes temporally and in magnitude. Overall, increased N availability did not always indicate greater N loss or yield, suggesting that N conserving management techniques can be employed in conservation agriculture systems without sacrificing yield.
7

VERSO UNA RIDUZIONE DELL'IMPATTO DELLA GESTIONE DEL SUOLO E DELLE PRATICHE DI COLTIVAZIONE SUL CAMBIAMENTO CLIMATICO GLOBALE / TOWARDS REDUCING THE IMPACT OF SOIL MANAGEMENT AND TILLAGE PRACTICES ON THE GLOBAL CLIMATE CHANGE / TOWARDS REDUCING THE IMPACT OF SOIL MANAGEMENT AND TILLAGE PRACTICES ON THE GLOBAL CLIMATE CHANGE

FIORINI, ANDREA 27 March 2018 (has links)
L'adozione di (agro)ecosistemi sostenibili viene indicata come una efficace strategia in grado sequestrare carbonio (C) nel suolo, mitigando così il cambiamento climatico e migliorando la fertilità. Sebbene il potenziale di sequestro del C della non-lavorazione (NT) sia stato generalmente sovrastimato, esso risulta essere di 0,26 Mg ha-1 anno-1 superiore rispetto al regime arativo. Inoltre, il 76,6% di questo quota è localizzato in frazioni considerabili come relativamente stabili. Il NT aumenta lo sviluppo radicale delle colture erbacee (es. mais, soia, frumento) negli stati superficiali del suolo (0-5 cm). Le correlazioni tra i parametri di densità radicale e le proprietà fisiche del suolo mostrano come lo sviluppo radicale sia un fondamentale indicatore di qualità del suolo in NT. I residui delle cover crops influenzano le emissioni di protossido d’azoto (N2O) in NT: i residui di segale favoriscono l'immobilizzazione dell’azoto (N), aumentandone così l'efficienza d’utilizzo e diminuendo le emissioni, mentre i residui di veccia vellutata aumentano l’N2O come conseguenza della mineralizzazione dell’N. Le emissioni di N2O e la produttività dei prati stabili possono essere positivamente correlate, perché meccanismi diversi rispetto alla regolazione indotta dalla disponibilità di N possono controllare l'N2O: il C potrebbe essere un principale fattore di regolazione per nitrificazione e denitrificazione. / Adoption of sustainable (agro)ecosystems has been widely suggested to increase soil organic carbon (C) sequestration, to mitigate climate change and enhance soil fertility. Although its carbon sequestration potential has been generally overestimated, no-till (NT) results in an extra C sequestration of 0.26 ± 0.18 Mg ha-1 yr-1 as compared to conventional tillage and 76.6% of this extra C is located in C pools which could be considered relatively stable. NT increases root development of field crops (i.e. maize, soybean, winter wheat) in the top soil (0-5 cm), while does not in the deeper soil (5-60 cm). Positive correlations between root density and soil physical parameters shows how roots are main drivers of soil physical properties under NT. Cover crop residues may affect nitrous oxide (N2O) emissions under NT: rye residues enhances soil-nitrogen (N) immobilization, thus increasing N use efficiency and decreasing N2O, while hairy vetch residues as cover crop under NT increases N2O as a consequence of soil-N mineralization. N2O emissions and shoot productivity may be positive correlated in grasslands, because other mechanisms than plant-induced regulation of soil N pool may control N2O: C could be a major factor regulating nitrification and denitrification processes.
8

Estação de tratamento de esgotos: uma análise da correlação entre a aeração e a emissão de óxido nitroso / Sewage treatment plant: an analysis of the correlation between the aeration and the emission of nitrous oxide

Piccoli, Andrezza de Souza January 2010 (has links)
Made available in DSpace on 2011-05-04T12:36:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2010 / Em inúmeras ações humanas ocorrem emissões de gases que podem contribuir sobre maneira para o aumento na concentração dos gases estufa, dentre eles o óxido nitroso, acarretando danos ambientais locais e globais. Na busca de contribuir para o entendimento das causas para as mudanças climáticas globais há necessidade de compreender e conhecer os fluxos de óxido nitroso emitidos por diversos setores da atividade humana, inclusive em Estações de Tratamento de Esgoto. Aliando à técnica aspectos ambientais importantes a serem considerados no planejamento para implantação de uma tecnologia de tratamento de esgotos e proporcionando uma integração de campos de conhecimento, o estudo tem como objetivo analisar a correlação entre a aeração e a emissão de óxido nitroso em sistema de tratamento de esgotos. Tendo como metodologia o estudo de caso em Estação de Tratamento de Esgotos na Região Serrana do Estado do RJ, a pesquisa é caracterizada como pesquisa bibliográfica documental, exploratória e descritiva, com análises realizadas em laboratório. Este estudo é original em países tropicais, sendo o único estudo anterior feito na Universidade de New Hampshire / EUA em 1995. Visa, portanto, contribuir com a atualização de dados referentes às Mudanças Climáticas, possibilitando o aprofundamento futuro do tema. / In many human actions occurring gas emissions that can contribute significantly to the increased concentration of greenhouse gases, among them the oxide, causing environmental damage locally and globally. In seeking to contribute to the understanding of the causes of global climate change need to know and understand the flow of nitrous oxide emitted by various sectors of human activity, including waste treatment stations. Combining the technical environmental aspects to be considered in planning for deployment of a technology for treating wastewater and providing an integration of fields of knowledge, the study aims to analyze the correlation between the aeration and the emission of nitrous oxide system in wastewater treatment. Since the methodology as a case study in Station Sewage Treatment in the mountainous region of the state of RJ, the search is characterized as documentary literature, exploratory and descriptive, with analysis performed in the laboratory. This study is unique in tropical countries, the only previous study of the University of New Hampshire / USA in 1995. Aim, therefore contribute to the updating of data to climate change, enabling the further development of the theme.
9

The fate of nitrogen in lactose-depleted dairy factory effluent irrigated onto land

Ford, Colleen D. January 2008 (has links)
A two-year lysimeter study was undertaken to compare the environmental effects (e.g. nitrate leaching and nitrous oxide emissions) of soil applied lactose-depleted dairy factory effluent (LD-DFE) with lactose-rich DFE. The aim of this experiment was to determine the fate of nitrogen from LD-DFE and dairy cow urine applied to a Templeton fine sandy loam soil (Udic Ustrochrept), supporting a herbage cover of ryegrass (Lolium perenne) and white clover (Trifolium repens). Measurements were carried out on the amount of nitrogen lost from the soil via leaching, lost by denitrification, removed by the pasture plants, and immobilized within the soil organic fraction. Further, a comparison between the fate of nitrogen in LD-DFE irrigated onto land under a "cut and carry" system, as opposed to a "grazed" pasture system was undertaken. Lactose-depleted dairy factory effluent was applied at three-weekly intervals during the summer months at rates of 25 and 50 mm, until nitrogen loading targets of 300 and 600 kg N ha⁻¹ yr⁻¹ had been achieved. Measured leaching losses of nitrogen averaged 2 and 7 kg N ha⁻¹ yr⁻¹ for Control 25 and Control 50 treatments; 21, 20 and 58 kg N ha⁻¹ yr⁻¹ for 25 and 50 mm "cut and carry" treatments respectively; and 96 kg N ha⁻¹ yr⁻¹ for the 25 mm "grazed" treatment. The range of nitrate-N leaching loss from LD-DFE plus urine is no different from the lactose-rich DFE nitrate leaching loss. Uptake of nitrogen by the growing pasture averaged 153, 184,340,352,483, and 415 kg N ha⁻¹ yr⁻¹ for Control 25, Control 50, LD-DFE 25 and LD-DFE 50 mm "cut and carry" treatments, and the LD-DFE 25 mm "grazed" treatment, respectively. Denitrification losses were 0.06, 4.4, 1.69, 19.70, and 7.4 kg N ha⁻¹ yr⁻¹ for Control 25, the LD-DFE 25 "cut and carry" treatments, the LD-DFE 25 mm "grazed" treatment, and calculated "paddock losses", respectively. Isotopic nitrogen studies found that 29.4 and 25.8% of applied LD-DFE nitrogen was immobilised in the LD-DFE 25 and LD-DFE 50 "cut and carry" treatments. The results of this experiment confirm the findings of the previous lactose-rich DFE study, in that the effects of grazing stock are of greater environmental concern than the removal of lactose from the effluent waste stream.

Page generated in 0.1191 seconds