• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Agrivoltaic Implementation in Greenhouses : A Techno-Economic Analysis of Agrivoltaic Installations for Greenhouses in Sweden

Gauffin, Henrik January 2022 (has links)
Due to the growing population and climate change, the world will see an increase in demand for food, freshwater and renewable energy supply. Agrivoltaics has the possibility to address all these problems, by producing food and renewable energy but also by reducing water usage in agriculture. This thesis aims to study if agrivoltaics including storage has the potential to enable sustainable greenhouses in Stockholm, Sweden by trying to create a near net zero energy consumption for greenhouses with Agrivoltaics (AV) implemented. Furthermore a techno-economic assessment will be made for the AV-systems where Key Performance Indicator (KPI)’s are compared to economic parameters. The selected KPI’s were a near net zero energy consumption and irradiance underneath the Photovoltaics (PV) technology. The selected PV-technology was standard PV-modules, Semi-Transparent Module (STM) and Organic Solar Cell (OSC) PV. These technologies were paired with li-ion batteries between 0-100 kWh and simulated in the software System Advisor Model (SAM) over a 25 year period. The AV system was applied to two load profiles, one for indoor plants and one for tomatoes. The economic parameters calculated was Net Present Value (NPV), Net Capital Cost (NCC), and Levelised Cost of Electricity (LCOE).  The results showed that the system is efficient in summertime where the PV reached maximum capacity in summer and the battery works as a complement. In wintertime, the AV-system is not very efficient and most of the electricity comes from the grid. It was not possible to create a near net zero energy consumption including storage in Stockholm Sweden. The irradiance beneath the panels were at a maximum for OSC, it was slightly reduced for the STM, and below 50% for the standard PV-module, depending on the size of the AV-system. Depending on the shade tolerance of the plant, the PV-technology should be selected.

Page generated in 0.0509 seconds