• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Hopf algebras of symmetric and quasisymmetric functions

Dahlgren, Isabel January 2024 (has links)
This bachelor thesis aims to give an introduction to various Hopf algebras that arise in combinatorics, with a view towards symmetric functions. We begin by covering the algebraic background needed to define Hopf algebras, including a discussion of the algebra-coalgebra duality. Takeuchi's formula for the antipode is stated and proved. It is then generalised to incidence Hopf algebras. This is followed by a discussion of the Hopf algebra of symmetric functions. It is shown that the Hopf algebra of symmetric functions is self-dual. We also show that the graded dual of the Hopf algebra of quasisymmetric functions is the Hopf algebra of non-commutative symmetric functions. Relations to the Hopf algebra of symmetric functions in non-commuting variables are emphasised. Finally, we state and prove the Aguiar-Bergeron-Sottile universality theorem.

Page generated in 0.07 seconds