Spelling suggestions: "subject:"combinatorial hopf algebra"" "subject:"combinatorial kopf algebra""
1 |
Combinatoire algébrique des permutations et de leurs généralisations / Algebraic combinatorics of permutations and their generalisationsVong, Vincent 08 December 2014 (has links)
Cette thèse se situe au carrefour de la combinatoire et de l'algèbre. Elle se consacre d'une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires. Après un rappel des notions classiques de combinatoire et d'algèbres de Hopfavec quelques applications, nous abordons l'étude de certaines statistiques définies sur les permutations : les pics, les vallées, les doubles montées et les doubles descentes, qui sont à la base de la bijection de Françon-Viennot, elle-même débouchant sur une étude combinatoire des polynômes orthogonaux. Nous montrons qu'à partir de ces statistiques, il est possible de construire diverses sous-algèbres ou algèbres quotients de FQSym, une algèbre dont une base est indexée par les permutations. Puis, nous étudions deux suites classiques de combinatoire par une démarche non commutative : les polynômes de Gandhi, un raffinement polynomial des nombres de Genocchi, et les nombres d'Euler, une suite recelant de nombreuses propriétés combinatoires. Nous nous attachons à montrer que l'approche non commutative permet, dans la majeure partie des cas, d'obtenir de manière directe des interprétations d'identités combinatoires. Enfin, inversement, certaines questions de nature algébrique peuvent être abordées d'un point de vue combinatoire. Ainsi, à travers l'étude des algèbres dendriformes, des algèbres tridendriformes, et des quadrialgèbres, nous prouvons des questions de liberté à propos de ces algèbres grâce à la combinatoire des arbres étiquetés / This thesis is at the crossroads between combinatorics and algebra. It studies some algebraic problems from a combinatorial point of view, and conversely, some combinatorial problems have an algebraic approach which enables us tosolve them. In the first part, some classical statistics on permutations are studied: the peaks, the valleys, the double rises, and the double descents. We show that we can build sub algebras and quotients of FQSym, an algebra which basis is indexed by permutations. Then, we study classical combinatorial sequences such as Gandhi polynomials, refinements of Genocchi numbers, and Euler numbers in a non commutative way. In particular, we see that combinatorial interpretations arise naturally from the non commutative approach. Finally, we solve some freeness problems about dendriform algebras, tridendriform algebras and quadrialgebras thanks to combinatorics of some labelled trees
|
2 |
Déformations d'algèbres de Hopf combinatoires et inversion de Lagrange non commutative / Deformations of combinatorial Hopf algebras and noncommutative Lagrange inversionBultel, Jean-Paul 25 November 2011 (has links)
Cette thèse est consacrée à l’étude de familles à un paramètre de coproduits sur lesfonctions symétriques et leurs analogues non commutatifs. On montre en introduisant une base appropriée qu’une famille à un paramètre d’algèbres de Hopf introduite par Foissy interpole entre l’algèbre de Faà di Bruno et l’algèbre de Farahat-Higman. Les constantes de structure dans cette base sont des déformations des constantes de structures de l’algèbre de Farahat-Higman dans la base des projections des classes de conjugaison. On obtient pour ces constantes de structure déformées un analogue des formules de Macdonald. Foissy a également introduit un analogue non commutatif de cette famille d’algèbres de Hopf, qui interpole entre l’algèbre de Hopf des fonctions symétriques non commutatives et l’algèbre de Faà di Bruno non commutative. Après avoir donné une nouvelle interprétation combinatoire de la formule de Brouder-Frabetti-Krattenthaler pour l’antipode de l’algèbre de Faà di Bruno non commutative, qui est une forme de la formule d’inversion de Lagrange non commutative, on donne une déformation à un paramètre de cette formule. Plus précisément, on obtient une formule explicite pour l’antipode de la déformation de Foissy dans sa version non commutative. On donne aussi d’autres propriétés combinatoires de l’algèbre de Faà di Bruno non commutative et d’autres résultats permettant d’étudier les deux familles d’algèbre de Hopf de Foissy. Ainsi, on généralise par exemple d’autres formes de la formule d’inversion de Lagrange non commutative en donnant d’autres formules qui calculent l’antipode de la deuxième déformation. / This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their noncommutative analogues. We show, by introducing an appropriate basis,that a one-parameter family of Hopf algebras introduced by Foissy interpolates between theFa`a di Bruno algebra and the Farahat-Higman algebra. The structure constants in this basisare deformations of the structure constants of the Farahat-Higman algebra in the basis ofprojections of conjugacy classes. For these deformed structure constants, we obtain an analogueof the Macdonald formulas.Foissy has also introduced a noncommutative analogue of this family of Hopf algebras. Itinterpolates between the Hopf algebra of noncommutative symmetric functions and the noncommutativeFa`a di Bruno algebra. First, we give a new combinatorial interpretation ofthe Brouder-Frabetti-Krattenthaler formula for the antipode of the noncommutative Fa`a diBruno algebra, that is a form of the noncommutative Lagrange inversion formula. Then, wegive a one-parameter deformation of this formula. Namely, it is an explicit formula for theantipode of the noncommutative family.We also give other combinatorial properties of the noncommutative Fa`a di Bruno algebra,and other results about the families of Hopf algebras of Foissy. In this way, we generalize otherforms of the noncommutative Lagrange inversion formula. Namely, we give other formulasfor the antipode of the noncommutative family.
|
3 |
On Hopf algebras of symmetric and quasisymmetric functionsDahlgren, Isabel January 2024 (has links)
This bachelor thesis aims to give an introduction to various Hopf algebras that arise in combinatorics, with a view towards symmetric functions. We begin by covering the algebraic background needed to define Hopf algebras, including a discussion of the algebra-coalgebra duality. Takeuchi's formula for the antipode is stated and proved. It is then generalised to incidence Hopf algebras. This is followed by a discussion of the Hopf algebra of symmetric functions. It is shown that the Hopf algebra of symmetric functions is self-dual. We also show that the graded dual of the Hopf algebra of quasisymmetric functions is the Hopf algebra of non-commutative symmetric functions. Relations to the Hopf algebra of symmetric functions in non-commuting variables are emphasised. Finally, we state and prove the Aguiar-Bergeron-Sottile universality theorem.
|
4 |
From resurgent functions to real resummation through combinatorial Hopf algebras / Des fonctions résurgentes à la resommation réelle en passant par les algèbres de Hopf combinatoiresVieillard-Baron, Emmanuel 31 March 2014 (has links)
Le problème de la resommation réelle consiste à associer à une série divergente réelle unefonction analytique qui lui est asymptotique sur un secteur du plan complexe bissecté par unedes deux demi-directions réelles. Jean Ecalle a esquissé, pour le résoudre, les grandes lignesd’une théorie dite des bonnes moyennes uniformisantes. Celle-ci est basée sur plusieurs de sesdécouvertes : le calcul moulien simple et arborifié, les opérateurs étrangers et les fonctionsrésurgentes.Nous nous proposons dans cette thèse de détailler complètement la théorie des moyennesd’Ecalle. Il s’agit de l’appliquer à la resommation de la conjuguante formelle des champsanalytiques réels de type noeud-col et des difféomorphismes analytiques tangents à l’identitédans leur classe formelle la plus simple. Une partie conséquente de la thèse est consacrée àla théorie de l’arborification. C’est l’un des ingrédients majeurs de la théorie des moyennesmais pour laquelle Ecalle n’avait délivré que peu de détails.Un chapitre de la thèse traite de géométrie o-minimale. Il s’agit de démontrer l’existenced’un « isomorphisme formel »entre les familles de germes d’ensembles semi-analytiques issusde deux classes quasi-analytiques isomorphes. Bien que ce chapitre soit disjoint de la théoriedes moyennes, il est probable que cette dernière permette à l’avenir d’obtenir de nouvellesclasses quasi-analytiques.Enfin, nous proposons de faire le lien entre un procédé de resommation réelle de la conjuguanteformelle du noeud-col réel élaboré par R. Schäfke et les moyennes d’Ecalle. / Pas de résumé en anglais.
|
5 |
Deux exemples d'algèbres de Hopf d'extraction-contraction : mots tassés et diagrammes de dissection / Two examples of Hopf algebras with a selection-quotient coprodut : packed words and dissection diagramsMammez, Cécile 27 November 2017 (has links)
Ce manuscrit est consacré à l'étude de la combinatoire de deux algèbres de Hopf d'extraction-contraction. La première est l'algèbre de Hopf de mots tassés WMat introduite par Duchamp, Hoang-Nghia et Tanasa dont l'objectif était la construction d'un modèle de coproduit d'extraction-contraction pour les mots tassés. Nous expliquons certains sous-objets ou objets quotients ainsi que des applications vers d'autres algèbres de Hopf. Ainsi, nous considérons une algèbre de permutations dont le dual gradué possède un coproduit de déconcaténation par blocs et un produit de double battage décalé. Le double battage engendre la commutativité de l'algèbre qui est donc distincte de celle de Malvenuto et Reutenauer. Nous introduisons également une algèbre de Hopf engendrée par les mots tassés de la forme x₁...x₁. Elle est isomorphe à l'algèbre de Hopf des fonctions symétriques non commutatives. Son dual gradé est donc isomorphe à l'algèbre de Hopf des fonctions quasi-symétriques. Nous considérons également une algèbre de Hopf de compositions et donnons son interprétation en termes de coproduit semi-direct d'algèbres de Hopf. Le deuxième objet d'étude est l'algèbre de Hopf de diagrammes de dissection HD introduite par Dupont en théorie des nombres. Nous cherchons des éléments de réponse concernant la nature de sa cogèbre sous-jacente. Est-elle colibre ? La dimension des éléments primitifs de degré 3 ne permet pas de conclure. Le cas du degré 5 permet d'établir la non-coliberté dans le cas où le paramètre de HD vaut - 1. Nous étudions également la structure pré-Lie du dual gradué HD. Nous réduisons le champ de recherche à la sous-algèbre pré-Lie non triviale engendrée par le diagramme de dissection de degré 1. Cette algèbre pré-Lie n'est pas libre. / This thesis deals with the study of combinatorics of two Hopf algebras. The first one is the packed words Hopf algebra WMAT introduced by Duchamp, Hoang-Nghia, and Tanasa who wanted to build a coalgebra model for packed words by using a selection-quotient process. We describe certain sub-objects or quotient objects as well as maps to other Hopf algebras. We consider first a Hopf algebra of permutations. Its graded dual has a block deconcatenation coproduct and double shuffle product. The double shuffle product is commutative so the Hopf algebra is different from the Malvenuto and Reutenauer one. We analyze then the Hopf algebra generated by packed words looking like x₁...x₁. This Hopf algebra and non commutative symmetric functions are isomorphic. So its graded dual and quasi-symmetric functions are isomorphic too. Finally we consider a Hopf algebra of compositions an give its interpretation in terms of a semi-direct coproduct structure. The second objet we study is the Hopf algebra of dissection diagrams HD introduced by Dupont in number theory. We study the cofreedom problem. We can't conclude with homogeneous primitive elements of degree 3. With the degree 5 case, we can say that is not cofree with the parameter -1. We study the pre-Lie algebra structure of HD's graded dual too. We consider in particular the sup-pre-Lie algebra generated by the dissection diagram of degree 1. It is not a free pre-Lie algebra.
|
Page generated in 0.3456 seconds