• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des transferts couplés de chaleur, d'air et d'humidité dans les matériaux poreux de construction / Modeling of coupled heat, air and moisture in porous building materials

Abahri, Kamilia 11 December 2012 (has links)
Ces travaux de thèse visent à étudier les transferts couplés de chaleur, de masse et d’air au sein des matériaux poreux. Sur le volet de la modélisation, il s’agit de prédire le comportement hygrothermique de ces matériaux, à l’aide d’un modèle macroscopique, qui intègre à la fois l’effet du phénomène de thermodiffusion et celui de la pression totale de l’air s’exerçant sur les parois du bâtiment. Ce modèle, dont les paramètres d’entrée sont évalués expérimentalement, utilise des moteurs de transfert continus, d’où la possibilité de traiter des problèmes de transferts dans les matériaux multicouches. Il présente aussi l’avantage d’admettre, dans certaines configurations, des solutions analytiques d’où la possibilité d’entreprendre des comparaisons avec des solutions numériques. De plus, une justification formelle des équations de bilan de ce modèle a été abordée, moyennant l’utilisation d’une approche à changement d’échelle « micro-macro ». Il s’agit d’affiner la modélisation des transferts hydriques du comportement macroscopique, en utilisant des informations issues de la microstructure. Le passage de l’échelle microscopique à l’échelle macroscopique a été réalisé à l’aide de la méthode d’homogénéisation par prise de moyenne. Une des difficultés de l’utilisation de ce modèle réside dans l’identification des nombreux paramètres caractérisant les propriétés hygrothermiques des matériaux. Une partie du travail a été consacrée à l’évaluation des principales propriétés intrinsèques des matériaux moyennant l’élaboration de différents prototypes expérimentaux au laboratoire. Par ailleurs, une approche expérimentale dédiée à l’évaluation du processus de la thermodiffusion dans les matériaux poreux a été entreprise. Pour cela, une expérimentation relative à la détermination de l’effet du gradient de température et de la dynamique du processus d’échange d’eau à l’intérieur des parois a été mise en place au laboratoire. L’utilisation de la plateforme expérimentale MegaCup du Technical University of Denmark a permis de collecter des données relatives à la sensibilité de l’effet de la thermodiffusion sur les transferts couplés de chaleur, d’air et d’humidité. Une comparaison des résultats expérimentaux et numériques a ensuite été effectuée. Peu d’écarts ont été relevés. Aussi, une investigation expérimentale portant sur la contribution des infiltrations massiques sur les transferts hydriques dans les matériaux de construction a été réalisée. Moyennant le développement d’un banc d’essai, une caractérisation expérimentale du coefficient d’infiltration d’humidité a été entreprise. Ce dernier est utilisé comme paramètre d’entrée des modèles de simulation numérique. / The purpose of this thesis is to study coupled heat air and moisture transfer in porous building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, with a macroscopic model, that incorporates simultaneously the effect of thermodiffusion phenomenon and that of total pressure on the building walls. The input parameters are evaluated experimentally using continuous driving potentials, where the ability to deal with problems of transfer in multilayer materials. In some configurations, it presents the advantage to undertake analytical solution that can be confronted with numerical solutions. Furthermore, a formal justification of balance equations of the developed model was addressed through the use of ascaling approach. Then, the modeling of macroscopic moisture transfer behavior, by implementing information from the microstructure can be refined. The transition of the microscopic to macroscopic scale was performed using the mean field homogenization. One of the difficulties with the use of this model lies in the identification of many parameters characterizing the hygrothermal properties of materials. Therefore, a part of the present work was devoted to the evaluation of the main properties of materials through the development of various experimental prototypes in the laboratory. More over, an experimental approach dedicated to the evaluation of the thermodiffusion process in porous materials has been undertaken. In this way, an experimentation concerning the determination of the temperature gradient and dynamics of water exchange process inside walls has been established. Furthermore, the use of the experimental platform MegaCup at theTechnical University of Denmark has collected data on the sensitivity of the thermodiffusion effect. Subsequently, a comparison of the experimental and the numerical results was performed. Few differences were observed. Otherwise, an experimental investigation on the contribution of the mass infiltration of water transfers in building materials was performed. A characterization of the moisture infiltration coefficient was performed through the development of the experimental test. This coefficient was used as an input parameter in the simulation models.

Page generated in 0.0925 seconds