Spelling suggestions: "subject:"airmist spray"" "subject:"airmist opray""
1 |
NUMERICAL INVESTIGATION OF AIR-MIST SPRAY COOLING AND SOLIDIFICATION IN SECONDARY ZONE DURING CONTINUOUS CASTINGVitalis Ebuka Anisiuba (11828069) 20 December 2021 (has links)
As a result of the
intense air-water interaction in the spray nozzle, air-mist spray is one of the
most promising technologies for attaining high heat transfer. CFD simulations
and multivariable linear regression were used in the first part of this study to
analyze the air-mist spray produced by a flat-fan atomizer and to predict the
heat transfer coefficient using the casting operating conditions such as air
pressure, water flow rate, cast speed and standoff distance. For the air-mist
spray cooling simulation, a four-step simulation method was utilized to capture
the turbulent flow and mixing of the two fluids in the nozzle, as well as the
generation, transport, and heat transfer of droplets. Analysis of the casting
parameters showed that an increase in air pressure results in efficient
atomization, increases the kinetic energy of the droplets and produces smaller
droplet size thus, the cooling of the slab increases significantly. Also, a
decrease in water flow rate, standoff distance and casting speed would result
in more efficient cooling of the steel slab. The second part of the study
investigated the solidification of steel in the secondary cooling region.
Caster geometry and casting parameters were studied to evaluate their impact on
the solidification of steel. The parameters studied include roll gap, roll
diameter, casting speed and superheat. It was found that a smaller ratio of
roll gap to roll diameter is more efficient for adequate solidification of
steel without any defect. Casting speed was found to have a significant effect
on the solidification of steel while superheat was found to be insignificant in
the secondary zone solidification. The result from the air-mist spray cooling
was integrated into the solidification model to investigate the solidification
of steel in the entire caster and predict the surface temperature, shell growth
and metallurgical length. To replicate real casting process, temperature
dependent material properties of the steel were evaluated using a thermodynamic
software, JMatPro. The air-mist spray model was majorly investigated using
ANSYS Fluent 2020R1 CFD tool while the solidification of steel was studied
using STARCCM+ CFD software. Using the findings from this study, continuous
casting processes and optimization can be improved.
|
2 |
AIR-MIST SPRAY MODEL DEVELOPMENT IN STEEL SECONDARY COOLING PROCESSEdwin A Mosquera Salazar (8812070) 08 May 2020 (has links)
Continuous casting is an important process to transform molten metal into solid. Arrays of spray nozzles are used along the process to remove heat from the slab letting it solidify. Efficient and uniform heat removal without slab cracking is desired during steel continuous casting, and air-mist sprays could help to achieve this goal.Air-mist nozzles are one of the important keys for determining the quality of steel as well as energy consumption for pumping the water. Based on industrial data, it is estimated that a 1% reduction in scrapped production due to casting related defects can result in annual savings of 40.53 million dollars in the U.S. Computational simulations studies can minimize defects in steel such as cracks, inclusions, macro-segregations, porosity, and others, which are closely related to the heat transfer between water droplets and hot slab surface.<div><br></div><div>Conducting multiple spray experiments in order to find optimum operating conditions might be impractical and expensive in some cases. Thus, Computational Fluid Dynamics (CFD) simulation is aimed to be used for simulating the air-mist spray process. Because it is a challenging process due to strong air and water interaction, then numerical models have been developed to simulate water droplets. The first model involves air and water phases which then are transformed in single-phase water droplets. To do so, a Volume of Fraction (VOF) to the Discrete Phase Model (DPM) is used.<br></div><div><br></div><div>VOF-TO-DPM transition model involves the primary and secondary breakup which occurs in the water atomization process, starting with a single water core, followed by a smaller compact mass of water known as lumps or ligaments due to the interaction of air, and finally converted into water droplets.The second model is using the Nukiyama-Tanasawa function size distribution which injects water droplets based on defined size range and velocity profile. A validation of droplet size and velocity against experimental data has been accomplished. The models can avoid acquiring expensive equipment in order to understand nozzle spray performance, and droplets generated. Quality, water droplet velocity, size, energy, and water consumption are the core of the current study. Last but not least, the methodology for this model can be used in any other air-mist nozzle design.<br></div>
|
Page generated in 0.0484 seconds